Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Hữu Minh Trí

Tìm giá trị nhỏ nhất

a)A=4x2-4x+23

b)B=25x2+y2+10x-4y+2

HT.Phong (9A5)
24 tháng 10 2023 lúc 8:11

a) \(A=4x^2-4x+23\)

\(A=4x^2-4x+1+22\)

\(A=\left(2x-1\right)^2+22\)

Mà: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(2x-1\right)^2+22\ge22\forall x\)

Dấu "=" xảy ra:

\(2x-1=0\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy: \(A_{min}=22\Leftrightarrow x=\dfrac{1}{2}\)

b) \(B=25x^2+y^2+10x-4y+2\)

\(B=25x^2+10x+1+y^2-4y+4-3\)

\(B=\left(5x+1\right)^2+\left(y-2\right)^2-3\)

Mà: \(\left\{{}\begin{matrix}\left(5x+1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow B=\left(5x+1\right)^2+\left(y-2\right)^2-3\ge-3\forall x,y\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}5x+1=0\\y-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5x=-1\\y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=2\end{matrix}\right.\)

Vậy: \(B_{min}=-3\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=2\end{matrix}\right.\)


Các câu hỏi tương tự
manh nguyenvan
Xem chi tiết
Mạnh=_=
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
.........
Xem chi tiết
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Lan Kim
Xem chi tiết
phamducluong
Xem chi tiết
Nguyền Hoàng Minh
Xem chi tiết