Có hai chiếc hộp, mỗi hộp đựng 6 tấm thẻ ghi các số 1;2;3;4;5;6. Rút ngẫu nhiên một tấm thẻ từ mỗi hộp. Thay dấu “?” bằng các từ thích hợp trong các từ sau: ngẫu nhiên, chắc chắn, không thể.
Có 2 chiếc hộp, mỗi hộp chứa 5 chiếc thẻ đều được đánh số từ 1 đến 5. Từ mỗi hộp rút ngẫu nhiên ra 1 chiếc thẻ. Tính xác suất để rút được 2 thẻ có tổng số ghi trên hai tấm thẻ bằng 6?
A. 2 25
B. 1 5
C. 3 25
D. 4 25
Có 50 tấm thẻ, trên mỗi tấm thẻ có ghi một số nguyên dương không vượt quá 50; và hai số ghi trên hai tấm thẻ bất kỳ là khác nhau. Hỏi có hay không số nguyên dương n sao cho ta có thể xếp 50 tấm thẻ đó vào n chiếc hộp, thỏa mãn điều kiện: Trong mỗi hộp, có thể chia các tấm thẻ thành hai nhóm mà tổng các số ghi trên các tấm thẻ của một nhóm bằng tổng các số ghi trên các tấm thẻ của nhóm còn lại? (Nếu trong nhóm chỉ có một tấm thẻ thì tổng các số ghi trên các tấm thẻ của nhóm đó là số ghi trên chính tấm thẻ ấy.)
Một chiếc hộp đựng 7 tấm thẻ như nhau được ghi số 2;3;4;5;6;7;8. Rút ngẫu nhiên một tấm thẻ trong hộp. Tìm xác suất để rút được tấm thẻ:
a) Ghi số nhỏ hơn 10
b) Ghi số 1
c) Ghi số 8
a) Vì biến cố: “ Rút được tấm thẻ ghi số nhỏ hơn 10” là biến cố chắc chắn nên xác suất rút được tấm thẻ ghi số nhỏ hơn 10 là 1.
b) Vì biến cố: “ Rút được tấm thẻ ghi số 1” là biến cố không thể nên xác suất rút được tấm thẻ ghi số 1 là 0.
c) Biến cố: “ Rút được tấm thẻ ghi số 8” là biến cố ngẫu nhiên.
Có 7 biến cố đồng khả năng: “ Rút được thẻ ghi số 2” ; “ Rút được thẻ ghi số 3”; “ Rút được thẻ ghi số 4”; “ Rút được thẻ ghi số 5”; “ Rút được thẻ ghi số 6”; “ Rút được thẻ ghi số 7”; “ Rút được thẻ ghi số 8” và luôn xảy ra 1 trong 7 biến cố đó.
Xác suất của mỗi biến cố là: \(\dfrac{1}{7}\)
Vậy xác suất rút được thẻ ghi số 8 là \(\dfrac{1}{7}\)
Một hộp có 10 chiếc thẻ cùng loại , mỗi thẻ được ghi một trong các số 1, 2, 3,..., 10; hai thẻ khác nhau thì ghi hai số khác nhau.
Rút ngẫu nhiên một chiếc thẻ từ trong hộp, ghi lại số của thẻ rút được và bỏ lại thẻ đó vào hộp. Sau 25 rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Tính xác suất thực nghiệm:
a) Xuất hiện số 1;
b) Xuất hiện số 5;
c) Xuất hiện số 10.
Một chiếc hộp có năm thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5, hai thẻ khác nhau thì ghi hai số khác nhau.
Rút ngẫu nhiên một chiếc thẻ trong hộp. Ghi lại số trên thẻ rút được và bỏ lại thẻ vào hộp. Sau 10 lần rút thẻ liên tiếp, bạn Hà Linh có kết quả thống kê như sau:
Hãy kiểm đếm số lần xuất hiện thẻ số 3 và thẻ số 5 sau 10 lần rút ngẫu nhiên.
Số lần xuất hiện thẻ số 3 là: 3 lần
Số lần xuất hiện thẻ số 5 là: 3 lần
Hộp thứ nhất đựng 1 thẻ xanh, 1 thẻ đỏ và 1 thẻ vàng. Hộp thứ hai đựng 1 thẻ xanh, 1 thẻ đỏ. Các tấm thẻ có kích thước có khối lượng như nhau. Lần lượt lấy ra ngẫu nhiên từ mỗi hộp một tấm thẻ
a) Sử dụng sơ đồ hình cây, hãy liệt kê tất cả các kết quả có thể xảy ra
b) Tính xác suất của biến cố “Trong 2 thẻ lấy ra có ít nhất 2 thẻ màu đỏ”
a) Các kết quả có thể xảy ra trong 2 lần lấy tấm thẻ từ 2 hộp được thể hiện ở sơ đồ hình cây như hình dưới đây:
b)
Gọi A là biến cố “Trong 2 thẻ lấy ra không có thẻ màu đỏ nào” là biến cố đối của biến cố “Trong 2 thẻ lấy ra có ít nhất 2 thẻ màu đỏ”
Dựa vào sơ đồ hình cây ta thấy có tất cả 6 kết quả có thể xảy ra, trong đó có 2 kết quả thuận lợi cho I. Do đó: \(P(A) = \frac{2}{6} = \frac{1}{3}\)
Vậy xác suất của biến cố “Trong 2 thẻ lấy ra có ít nhất 2 thẻ màu đỏ” là \(1 - \frac{1}{3} = \frac{2}{3}\)
Một hộp đựng 25 tấm thẻ cùng loại được đánh số từ 1 đến 25. Rút ngẫu nhiên một tấm thẻ trong hộp. Xét các biến cố P: “Số ghi trên tấm thẻ là số chia hết cho 4”; Q: “Số ghi trên tấm thẻ là số chia hết cho 6”.
a) Mô tả không gian mẫu.
b) Nội dung của biến cố giao S = PQ là gì? Mỗi biến cố P, Q, S là tập con nào của không gian mẫu?
a) Không gian mẫu là tập hợp các số từ 1 đến 25, được ký hiệu là Ω = 1,2,3,…,25.
b) Biến cố P là tập hợp các số chia hết cho 4, được ký hiệu là P = {4,8,12,16,20,24}.
Biến cố Q là tập hợp các số chia hết cho 6, được ký hiệu là Q = {6,12,18,24}.
Biến cố S là giao của hai biến cố P và Q, nghĩa là các số vừa chia hết cho 4 và vừa chia hết cho 6, được ký hiệu là S = P ∩ Q = {12,24}.
Vậy P, Q và S lần lượt là các tập con của không gian mẫu Ω.
a: Ω={1;2;3;...;25}
n(Ω)=25
b: S=PQ là số ghi trên tấm thẻ vừa chia hết cho 4 vừa chia hết cho 6
P={4;8;12;16;20;24}
Q={6;12;18;24}
S={12;24}
Biến cố P,Q,S lần lượt là các tập hợp con của không gian mẫu
Một hộp có 10 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số nguyên dương không vượt quá 10, hai thẻ khác nhau thì ghi hai số khác nhau. Lấy ngẫu nhiên một chiếc thẻ từ trong hộp, ghi lại số của thẻ lấy ra và bỏ lại thẻ đó vào hộp. Sau 25 lần lấy thẻ liên tiếp, thẻ ghi số 5 được lấy ra 5 lần.
a) Tính xác suất thực nghiệm của biến cố “Thẻ lấy ra ghi số 5” trong trò chơi trên.
b) Nêu mối liên hệ giữa xác suất thực nghiệm của biến cố “Thẻ rút ra ghi số nguyên tổ” với xác suất của biến cố đó khi số lần rút thẻ ngày càng lớn.
Hộp thứ nhất chứa 3 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 3. Hộp thứ hai chứa 5 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 5. Lấy ra ngẫu nhiên từ mỗi hộp 1 thẻ. Gọi \(A\) là biến cố “Tổng các số ghi trên 2 thẻ bằng 6”, \(B\) là biến cố “Tích các số ghi trên 2 thẻ là số lẻ”.
a) Hãy viết tập hợp mô tả biến cố \(AB\) và tính \(P\left( {AB} \right)\).
b) Hãy tìm một biến cố khác rỗng và xung khắc với cả hai biến cố \(A\) và \(B\).
a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`
P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`
b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".
$HaNa$