Tìm x,y thuộc n sao để x^3y-x^2y+4x^2+5xy-y^2=0
tìm số nguyên x,y sao cho x(x^2-y)+y+3)(x^2+1)=0
1/ a) Tìm m để: (x^2-4x+m) chia hết cho (x-2) b) Tìm số nguyên x để: (x^2-4x+5) chia hết cho (x-2) c) Cho x+y= 2. Tính P=x^3 + y^3 + 6xy d) Cho x+3y= 1. Tính P= (x-2y)^2 + 5y.(y+2x)
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
1. Tinh:
a) 4x^2 - x^2 + 8x^2
b) 1/2.x^2.y^2 - 3/4.x^2.y^2 + x^2y^2
c) 3y - 7y + 4y - 6y
2. Thu gọn biểu thức sau:
a) (-2/3.y^3) + 3y^2 - 1/2.y^3 - y^2
b) 5x^3 - 3x^2 + x- x^3 - 4x^2 - x
3. Cho đơn thức A = 5xy^2.(1/2)x^2y^2x
a) Thu gọn đơn thức trên
b) Tìm bậc. Xác định hệ số, phần biến
c) Tính giá trị của A khi x =1; y = -1
1 ) a) \(4x^2-x^2+8x^2\)
\(=\left(4+8\right).x^2+x^2-x^2\)
\(=12.x^3\)
b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)
\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)
\(=-\frac{1}{4}.x^6+y^6\)
c) \(3y-7y+4y-6y\)
\(=\left(3-7+4-6\right).y.y.y.y\)
\(=-6.y^4\)
2)
\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)
\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)
\(=\frac{25}{6}.y^5\)
b) \(5x^3-3x^2+x-x^3-4x^2-x\)
\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)
\(=-2.0=0\)
hông chắc
3)a) \(5xy^2.\frac{1}{2}x^2y^2x\)
\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)
\(=\frac{5}{2}.x^5.y^4\)
b) Tổng các bậc của đơn thức là
5+4 = 9
Hệ số của đơn thức là \(\frac{5}{2}\)
Phần biến là x;y
Thay x=1;y=-1 vào đơn thức
\(\frac{5}{2}.1^5.\left(-1\right)^4\)
\(\frac{5}{2}.1.\left(-1\right)\)
\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)
Vậy ....
chắc không đúng đâu uwu
B1: Chứng minh rằng:Nếu 10x2+5xy-3y2=0 thì \(\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}=-3\)
B2:Tìm giá trị nguyên của x sao cho:\(\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)nhận giá trị nguyên
\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)
\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)
\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)
\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)
\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)
\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)
= - 3 (đpcm)
~~~
\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)
\(=\frac{x+2+x+x-2}{x^2+2x}\)
\(=\frac{3x}{x\left(x+2\right)}\)
\(=\frac{3}{x+2}\)
\(A\in Z\)
\(\Leftrightarrow3⋮x+2\)
\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Tìm các cặp số (x;y) nguyên thoả mãn:
a) |x - 3y| + |y + 4| = 0
b) |x - y - 5| + ( y + 3 ) ²
c) |x + y - 1| + ( y - 2)^4 = 0
d) |x + 3y - 1| + 3.| y + 2|= 0
e) |2021 - x| + 2y - 2022| = 0
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)
Bài 1:
a) 7x –12 = 5x + 3
b) 2(3x –5) –7(x + 1) = 2
c) (1 –3x)^2= (4x –3)^2
d) (2x + 3)(4x –2) –2(2x + 1)^2= 12
Bài 2:
Cho biểu thứcA = (5x –3y + 1)(7x + 2y –2)
a) Tìm x sao cho với y = 2 thì A = 0
b) Tìm y sao cho với x = -2 thì A = 0
1.
a.\(\Leftrightarrow7x-5x=3+12\)
\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)
b.\(\Leftrightarrow6x-10-7x-7=2\)
\(\Leftrightarrow x=-19\)
c.\(\Leftrightarrow1-3x=4x-3\)
\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)
d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)
\(\Leftrightarrow-2=12\left(voli\right)\)
1/ Tìm x: (x-7)^x+1-(x-7)^x+11=0
2/ Tìm x: /x-2011y/+(y-1)^2012=0
3/ Tìm x,y:
a) /x+5/+(3y-4)^2012=0
b) (2x+1)^2+/2y-x/-8=12-5.2^2
4/
a) Tìm các số nguyên tố x,y sao cho: 51x+26y=2000
b) Tìm các số tự nhiện x,y biết: 7(x-2004)^2=23-y^2
c) Tìm x,y nguyên biết: x+y+3x-y=6
d) Tìm mọi sô nguyên tố thỏa mãn x^2-2y^2=1
Tìm \(x,y\in N\)* sao cho \(x^2y^2\left(y-x\right)=5xy^2-27\)
Bài 1: CMR:
Nếu 10x^2 + 5xy - 3y^2 =0 thì 2x-y/3x-y + 5y-x/3x+y = -3
Bài 2: Tìm các giá trị của số nguyên x sao cho:
1/x + 1/x+2 + x-2/x^2 + 2x nhận giá trị nguyên
Bài 3: Tìm a,b biết:
a) 1/x^2 - 4 = 9/x-2 + b/x+2
b) 1/x^3 +1 = a/x+1 + bx + c/x^2 -x +1
giúp mình vs m.n ơi
Bài 2:
\(\dfrac{1}{x}+\dfrac{1}{x+2}+\dfrac{x-2}{x\left(x+2\right)}\)
\(=\dfrac{x+x+2+x-2}{x\left(x+2\right)}=\dfrac{3x}{x\left(x+2\right)}=\dfrac{3}{x+2}\)
Để 3/x+2 là số nguyên thì \(x+2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-1;-3;1;-5\right\}\)