Viết bt sau dưới dạng tích :
a)27x3-27x2+3x+1
b)x3-3x2+3x-1
c)0,001-1000x3
TT giúp mik nha
Viết các biểu thức sau dưới dạng một tích hai đa thức
a , 27 + x3 b , 64x3 + 0,001 c , 8 - 27x3 d , x3/125 - y3/27
Giúp em
\(a,=\left(3+x\right)\left(9-3x+x^2\right)\\ b,=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\\ c,=\left(2-3x\right)\left(4+6x+9x^2\right)\\ d,=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
a) \(27+x^3=3^3+x^3=\left(3+x\right)\left(9-3x+x^2\right)\)
b) \(64x^3+0,001=\left(4x\right)^3+\left(\dfrac{1}{10}\right)^3=\left(4x+\dfrac{1}{10}\right)\left(16x^2-\dfrac{4x}{10}+\dfrac{1}{100}\right)\)
a/\(27+x^3=\left(3+x\right)\left(9-3x+x^2\right)\)
b/ \(64x^3+0,001=\left(4x+0,1\right)\left(16x^2-0,4x+0,01\right)\)
c/ \(8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d/ \(\dfrac{x^3}{125}-\dfrac{y^3}{27}=\left(\dfrac{x}{5}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{25}+\dfrac{xy}{15}+\dfrac{y^2}{9}\right)\)
viết các biểu thức sau dưới dạng tích :
a) 1 - x3/8
b) 27x3 + 1
c) 64x3 - 27y3
a: \(1-\dfrac{x^3}{8}=\left(1-\dfrac{1}{2}x\right)\left(1+\dfrac{1}{2}x+\dfrac{1}{4}x^2\right)\)
b: \(27x^3+1=\left(3x+1\right)\left(9x^2-3x+1\right)\)
c: \(64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
Viết theo hằng đẳng thức
a) x3- 3x2+ 3x –1
b) 1 - 4x2
c) (x2+ 2x + 4)(x - 2)
d) 27x3– 1
e) x3+ 8
g) x2- 4x + 4
h) (x - 2y)(x + 2y)
j) x2- 8x + 16
\(a,=\left(x-1\right)^3\\ b,=\left(1-2x\right)\left(1+2x\right)\\ c,=x^3-8\\ d,=\left(3x-1\right)\left(9x^2+3x+1\right)\\ e,=\left(x+2\right)\left(x^2-2x+4\right)\\ g,=\left(x-2\right)^2\\ h,=x^2-4y^2\\ j,=\left(x-4\right)^2\)
Viết các đa thức sau thành lập phương của 1 tổng hoặc 1 hiệu.
a) x3-3x2+3x-1
b) -8x3+12x2-6x+1
c)x3-3xy(x-y)-y3
a: =(x-1)^3
b: =(-2x+1)^3
c: =x^3-3x^2y+3xy^2-y^3
=(x-y)^3
Bài 1: Viết các biểu thức sau dưới dạng tích.
a, x3 + 8
b, 27x3 + 1
c, x3 + 27
d, 64x3 - 27y3
( Đây là hằng đẳng thức số 6 và 7)
Giúpppp mik zớiiiii:<
a: x^3+8=(x+2)(x^2-2x+4)
b: =(3x+1)(9x^2-3x+1)
c: =(x+3)(x^2-3x+9)
d: =(4x-3y)(16x^2+24xy+9y^2)
\(a.x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
\(b.27x^3+1=\left(3x+1\right)\left(9x-3x+1\right)\)
\(c.x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
\(d.64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
Câu 11: Đa thức 27x3 - 8 được phân tích thành nhân tử có kết quả là
A. (27x – 2)(27x2 + 54x + 4)
B. (3x – 2)(3x2 + 6x + 4)
C. (3x – 2)(9x2 – 6x – 4)
D. (3x – 2)(9x2 + 6x + 4)
Cho D.ABC có M, N lần lượt là trung điểm của AB, AC biết BC = 6cm. Độ dài MN là
A.3cm
B.1cm
C.4cm
D.2cm
Hằng đẳng thức (x - 1)3 được viết đúng là
A.(x - 1)3 = x3 - 3x2 + 3x + 1
B.(x - 1)3 = x3 - 3x + 3x2 - 1
C.(x - 1)3 = x3 - 2x2 + 2x - 1
D.(x - 1)3 = x3 - 3x2 + 3x - 1
Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu: –x3 + 3x2 – 3x + 1
–x3 + 3x2 – 3x + 1
= (–x)3 + 3.(–x)2.1 + 3.(–x).1 + 13
= (–x + 1)3 (Áp dụng HĐT (4) với A = –x và B = 1)
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
`1)x^3-7x+6`
`=x^3-x-6x+6`
`=x(x-1)(x+1)-6(x-1)`
`=(x-1)(x^2+x-6)`
`=(x-1)(x^2-2x+3x-6)`
`=(x-1)[x(x-2)+3(x-2)]`
`=(x-1)(x-2)(x+3)`
`2)x^3-9x^2+6x+16`
`=x^3-2x^2-7x^2+14x-8x+16`
`=x^2(x-2)-7x(x-2)-8(x-2)`
`=(x-2)(x^2-7x-8)`
`=(x-2)(x^2-8x+x-8)`
`=(x-2)[x(x-8)+x-8]`
`=(x-2)(x-8)(x+1)`
`3)x^3-6x^2-x+30`
`=x^3+2x^2-8x^2-16x+15x+30`
`=x^2(x+2)-8x(x+2)+15(x+2)`
`=(x+2)(x^2-8x+15)`
`=(x+2)(x^2-3x-5x+15)`
`=(x+2)[x(x-3)-5(x-3)]`
`=(x+2)(x-3)(x-5)`
`4)2x^3-x^2+5x+3`
`=2x^3+x^2-2x^2-x+6x+3`
`=x^2(2x+1)-x(2x+1)+3(2x+1)`
`=(2x+1)(x^2-x+3)`
`5)27x^3-27x^2+18x-4`
`=27x^3-9x^2-18x^2+6x+12x-4`
`=9x^2(3x-1)-6x(3x-1)+4(3x-1)`
`=(3x-1)(9x^2-6x+4)`
1) Ta có: \(x^3-7x+6\)
\(=x^3-x-6x+6\)
\(=x\left(x^2-1\right)-6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-6\right)\)
\(=\left(x-1\right)\left(x+3\right)\left(x-2\right)\)
2) Ta có: \(x^3-9x^2+6x+16\)
\(=x^3-2x^2-7x^2+14x-8x+16\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)-8\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-7x-8\right)\)
\(=\left(x-2\right)\left(x-8\right)\left(x+1\right)\)
3) Ta có: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
4) Ta có: \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+6\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+6\right)\)
5) Ta có: \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)