Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Joy
Xem chi tiết
Nguyễn Phương Uyên
25 tháng 3 2020 lúc 20:36

\(T=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)  ; x + y + z = 1

\(\Rightarrow T=\frac{x+y+z}{16x}+\frac{x+y+z}{4y}+\frac{x+y+z}{z}\)

\(=\frac{1}{16}+\frac{y}{16x}+\frac{z}{16x}+\frac{x}{4y}+\frac{1}{4}+\frac{z}{4y}+\frac{x}{z}+\frac{y}{z}+1\)

\(=\left(\frac{1}{16}+\frac{1}{4}+1\right)+\left(\frac{y}{16x}+\frac{x}{4y}\right)+\left(\frac{z}{16x}+\frac{x}{z}\right)+\left(\frac{z}{4y}+\frac{y}{z}\right)\)                    (1)

\(x;y;z>0\Rightarrow\frac{y}{16x};\frac{x}{4y};\frac{z}{16x};\frac{x}{z};\frac{z}{4y};\frac{y}{z}>0\)

áp dụng bđt cô si : 

\(\frac{y}{16x}+\frac{x}{4y}\ge2\sqrt{\frac{y}{16x}\cdot\frac{x}{4y}}=\frac{1}{4}\)                             (2)

\(\frac{z}{16x}+\frac{x}{z}\ge2\sqrt{\frac{z}{16x}\cdot\frac{x}{z}}=\frac{1}{2}\)                                 (3)

\(\frac{x}{4y}+\frac{y}{z}\ge2\sqrt{\frac{z}{4y}\cdot\frac{y}{z}}=1\)                                        (4)

(1)(2)(3)(4) \(\Rightarrow T\ge\frac{1}{16}+\frac{1}{4}+1+\frac{1}{4}+\frac{1}{2}+1\)

\(\Rightarrow T\ge\frac{49}{16}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y}{16x}=\frac{x}{4y}\\\frac{z}{16x}=\frac{x}{z}\\\frac{z}{4y}=\frac{y}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}4y^2=16x^2\\z^2=16x^2\\z^2=4y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2x\\z=4x\\z=2y\end{cases}}\) có x+y+z = 1

=> x + 2x + 4x = 1

=> x = 1/7

xong tìm ra y = 2/7 và z = 4/7

Khách vãng lai đã xóa
monsiaur kite
Xem chi tiết

\(S=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right).\left(x+y+z\right)\)   (do x+y+z=1 nên michf nhân vào kết quả sẽ ko bị  thay đổi)

\(S=\frac{21}{16}+\left(\frac{x}{4y}+\frac{y}{16x}\right)+\left(\frac{x}{z}+\frac{z}{16x}\right)+\left(\frac{y}{z}+\frac{z}{4y}\right)\)

AD BĐT cô si,ta có:

\(S\ge\frac{21}{16}+2.\sqrt{\frac{x}{4y}.\frac{y}{16x}}+2\sqrt{\frac{x}{z}.\frac{z}{16x}}+2.\sqrt{\frac{y}{z}.\frac{z}{4y}}=\frac{21}{16}+\frac{1}{4}+\frac{1}{2}+1=\frac{49}{16}\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=2y=z\\x+y+z=1\\x;y;z>0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}}\)

Khách vãng lai đã xóa
Hotory Yaruyuki
11 tháng 3 2022 lúc 8:22

T=116x+14y+1zT=116x+14y+1z  ; x + y + z = 1

⇒T=x+y+z16x+x+y+z4y+x+y+zz⇒T=x+y+z16x+x+y+z4y+x+y+zz

=116+y16x+z16x+x4y+14+z4y+xz+yz+1=116+y16x+z16x+x4y+14+z4y+xz+yz+1

=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)                    (1)

x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0

áp dụng bđt cô si : 

y16x+x4y≥2√y16x⋅x4y=14y16x+x4y≥2y16x⋅x4y=14                             (2)

z16x+xz≥2√z16x⋅xz=12z16x+xz≥2z16x⋅xz=12                                 (3)

x4y+yz≥2√z4y⋅yz=1x4y+yz≥2z4y⋅yz=1                                        (4)

(1)(2)(3)(4) ⇒T≥116+14+1+14+12+1⇒T≥116+14+1+14+12+1

⇒T≥4916⇒T≥4916

dấu "=" xảy ra khi \hept⎧⎪ ⎪⎨⎪ ⎪⎩y16x=x4yz16x=xzz4y=yz⇔\hept⎧⎨⎩4y2=16x2z2=16x2z2=4y2\hept{y16x=x4yz16x=xzz4y=yz⇔\hept{4y2=16x2z2=16x2z2=4y2

⇔\hept⎧⎨⎩y=2xz=4xz=2y⇔\hept{y=2xz=4xz=2y có x+y+z = 1

=> x + 2x + 4x = 1

=> x = 1/7

xong tìm ra y = 2/7 và z = 4/7

Khách vãng lai đã xóa
~$Tổng Phước Yaru😀💢$~
11 tháng 3 2022 lúc 8:23

T=116x+14y+1zT=116x+14y+1z  ; x + y + z = 1

⇒T=x+y+z16x+x+y+z4y+x+y+zz⇒T=x+y+z16x+x+y+z4y+x+y+zz

=116+y16x+z16x+x4y+14+z4y+xz+yz+1=116+y16x+z16x+x4y+14+z4y+xz+yz+1

=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)                    (1)

x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0

áp dụng bđt cô si : 

y16x+x4y≥2√y16x⋅x4y=14y16x+x4y≥2y16x⋅x4y=14                             (2)

z16x+xz≥2√z16x⋅xz=12z16x+xz≥2z16x⋅xz=12                                 (3)

x4y+yz≥2√z4y⋅yz=1x4y+yz≥2z4y⋅yz=1                                        (4)

(1)(2)(3)(4) ⇒T≥116+14+1+14+12+1⇒T≥116+14+1+14+12+1

⇒T≥4916⇒T≥4916

dấu "=" xảy ra khi \hept⎧⎪ ⎪⎨⎪ ⎪⎩y16x=x4yz16x=xzz4y=yz⇔\hept⎧⎨⎩4y2=16x2z2=16x2z2=4y2\hept{y16x=x4yz16x=xzz4y=yz⇔\hept{4y2=16x2z2=16x2z2=4y2

⇔\hept⎧⎨⎩y=2xz=4xz=2y⇔\hept{y=2xz=4xz=2y có x+y+z = 1

=> x + 2x + 4x = 1

=> x = 1/7

xong tìm ra y = 2/7 và z = 4/7

Khách vãng lai đã xóa
Nguyễn Hải Thân
Xem chi tiết
Phùng Minh Quân
26 tháng 1 2019 lúc 8:54

Svac-xơ nhé 

\(P=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)\(\Leftrightarrow\)\(\frac{1}{x}=\frac{2}{y}=\frac{4}{z}=\frac{1+2+4}{x+y+z}=7\)

Suy ra \(\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

... 

KYAN Gaming
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2021 lúc 15:43

\(P=\dfrac{\left(\dfrac{1}{4}\right)^2}{x}+\dfrac{\left(\dfrac{1}{2}\right)^2}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x+y+z}=\dfrac{49}{16}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{7};\dfrac{2}{7};\dfrac{4}{7}\right)\)

thanh nguyen
Xem chi tiết
dao tat thanh
28 tháng 12 2018 lúc 15:43

x, y, z > 0 chứ bn ? Nếu đúng z thì inbox với mik, mik sẽ chỉ cho....

thanh nguyen
28 tháng 12 2018 lúc 15:44

mình đánh nhầm bạn ạ. x y z >0 đấy

hoangchau
Xem chi tiết
Kiệt Nguyễn
27 tháng 11 2019 lúc 20:14

\(A=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)

\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)

\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)

\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)

(Dấu "="\(\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{\sqrt{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
28 tháng 11 2019 lúc 11:26

Thêm 1 cách nhé!Câu hỏi của Dang Quốc Hung - Toán lớp 8 - Học toán với OnlineMath

@Cool Boy @ Cách làm của em hay lắm nhưng x, y, z >0 em nhé! 

Khách vãng lai đã xóa
tth_new
28 tháng 11 2019 lúc 19:54

Không cần nhóm 1/16 ra ngoài đâu ๖²⁴ʱČøøℓ ɮøү ²к⁷༉.

Áp dụng BĐT Cauchy-Schwarz dạng Engel (hoặc Titu's Lecmma)

\(A=\frac{\left(\frac{1}{4}\right)^2}{x^2}+\frac{\left(\frac{1}{2}\right)^2}{y^2}+\frac{1^2}{z^2}\) (nhóm lên:v)

\(\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)

Ngắn gọn xúc tích:)Tự giải dấu "=" :v

Khách vãng lai đã xóa
Trần Minh Anh
Xem chi tiết
Akai Haruma
29 tháng 11 2018 lúc 21:40

Lời giải:

Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)(x+y+z)\geq \left(\sqrt{\frac{1}{16}}+\sqrt{\frac{1}{4}}+\sqrt{1}\right)^2\)

\(\Leftrightarrow P(x+y+z)\geq \frac{49}{16}\)

\(\Leftrightarrow P\geq \frac{49}{16}\) (do \(x+y+z=1\) )

Vậy \(P_{\min}=\frac{49}{16}\) tại \((x,y,z)=(\frac{1}{7}; \frac{2}{7}; \frac{4}{7})\)

thanh nguyen
Xem chi tiết
Bùi Đức Thắng
Xem chi tiết