Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yoriichi Tsugikuni
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 20:52

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

Ruby Châu
Xem chi tiết
Nguyễn Thanh Hằng
29 tháng 9 2017 lúc 11:36

Ta có :

\(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

\(\Leftrightarrow\dfrac{2a}{2b}=\dfrac{3c}{3d}=\dfrac{2a}{2b}=\dfrac{3c}{3d}\) (Áp dụng t/c dãy tỉ số bằng nhau)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

Vũ Quang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 23:16

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{2a+3c}{3a+4c}=\dfrac{2bk+3dk}{3bk+4dk}=\dfrac{2b+3d}{3b+4d}\)

Jenny Phạm
Xem chi tiết
 Mashiro Shiina
23 tháng 6 2017 lúc 21:19

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

Ta có:

Nếu:

\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)

\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)

\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)

Trần Ngọc Linh
Xem chi tiết
Bánh Trôi
Xem chi tiết
Hoàng Thị Ngọc Anh
13 tháng 6 2017 lúc 18:27

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)

Thay (1) vào đề:

\(VT=\left(2a+3c\right)\left(b+d\right)=\left(2bk+3dk\right)\left(b+d\right)=2b^2k+3bdk+2bdk+3d^2k=3d^2k+2b^2k+5bdk\)

\(VP=\left(bk+dk\right)\left(2b+3d\right)=2b^2k+2bdk+3bdk+3d^2k=3d^2k+2b^2k+5bdk\)

Khi đó: \(VT=VP\)

\(\Leftrightarrow\left(2a+3c\right)\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\rightarrowđpcm.\)

Đức Hiếu
13 tháng 6 2017 lúc 18:26

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\left(2a+3c\right)\left(b+d\right)=\left(2bk+3dk\right)\left(b+d\right)=2b^2k+2bkd+3bkd+3d^2k\)

\(=2b^2k+5bkd+3d^2k\)(1)

\(\left(a+c\right)\left(2b+3d\right)=\left(bk+dk\right)\left(2b+3d\right)=2b^2k+3bkd+2bkd+3d^2k\)

\(=2b^2k+5bkd+3d^2k\)(2)

Từ (1) và (2) suy ra:

\(\left(2a+3c\right).\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\)(đpcm)

Chúc bạn học tốt!!!

Nào Ai Biết
13 tháng 6 2017 lúc 18:28

Theo đề bài ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=> a = bk

=> c = dk

Ta có :

(2a + 3c)(b + d) = (2bk + 3dk)(b + d) = k(2b + 3d)(b + d)(1)

(a + c)(2b + 3d) = (bk + dk)(2b + 3d) = k(2d + 3d)(b + d)(2)

Từ (1) và (2)

=> (2a + 3c)(b + d) = (a + c)(2b + 3d)(đpcm)

tích nha .....

Mitsuha Taki
Xem chi tiết
Mitsuha Taki
30 tháng 9 2017 lúc 12:13

Các bạn chỉ cần giúp mk câu b, c, e, f,

Felinks Zemdegs
15 tháng 12 2017 lúc 20:43

bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui

Trần Ngọc Linh
Xem chi tiết
Eren
Xem chi tiết
Lightning Farron
25 tháng 9 2017 lúc 23:08

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)

\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)

\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)

*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)