Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
a/b+c+d=b/a+c+d=c/b+a+d=d/c+b+a
P=2a+5b/3c+4d-2b+5c/3d+4a-2c+5d/3a+4b+2d+5a/3c+4b
Bài 7: Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức phải chứng minh đều có nghĩa):
a)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\) b)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\) d)\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
ai hộ mik vs
Cho tỉ lệ thức : \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh
a) \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
b) \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
Từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\), với a , b , c , d ≠ 0 có thể suy ra:
A. \(\dfrac{3a}{2c}\)=\(\dfrac{2d}{3b}\)
B. \(\dfrac{3b}{a}\)=\(\dfrac{3d}{c}\)
C. \(\dfrac{5a}{5d}\)=\(\dfrac{b}{c}\)
D. \(\dfrac{a}{2b}\)=\(\dfrac{d}{2c}\)
Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) . Chứng minh đẳng thức sau : \(\dfrac{2a+3b}{3a-5b}\) = \(\dfrac{2c+3d}{3c-5d}\)
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
Cho a+b+c+d khác 0 và \(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{b+a+d}\)=\(\frac{d}{c+b+a}\)
Tính giá trị biểu thức P=\(\frac{2a+5b}{3c+4d}\)- \(\frac{2b+5c}{3d+4a}\)- \(\frac{2c+5d}{3a+4b}\)- \(\frac{2d+5a}{3c+4b}\)