Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chu Thị Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2023 lúc 7:44

a: góc BEC=góc BDC=90 độ

=>BCDE nội tiêp

b: Kẻ tiếp tuyến Ax

=>góc xAC=góc ABC=ADE

=>DE//Ax

=>OA vuông góc DE

trang huynh
Xem chi tiết
Minh Anh Vũ
Xem chi tiết
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 23:21

a: Xét tứ giác ADHE có 

\(\widehat{ADH}+\widehat{AEH}=180^0\)

nên ADHE là tứ giác nội tiếp

hay A,D,H,E cùng thuộc một đường tròn

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2021 lúc 21:38

a: Xét tứ giác ADHE có 

\(\widehat{ADH}+\widehat{AEH}=180^0\)

Do đó: ADHE là tứ giác nội tiếp

hay A,D,H,E cùng thuộc 1 đường tròn

manhcuong1
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2023 lúc 17:28

a:

Sửa đề: Chứng minh bốn điểm A,D,H,E cùng nằm trên đường tròn

Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>Tâm O là trung điểm của AH

b: Gọi giao điểm của AH với BC là M

Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

OD=OH

=>ΔODH cân tại O

=>\(\widehat{ODH}=\widehat{OHD}\)

mà \(\widehat{OHD}=\widehat{BHM}\)(hai góc đối đỉnh)

và \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{DBC}\right)\)

nên \(\widehat{ODH}=\widehat{DCB}\)

ΔDBC vuông tại D có DI là đường trung tuyến

nên DI=IB=IC=BC/2

IB=ID

=>ΔIDB cân tại I

=>\(\widehat{IBD}=\widehat{IDB}\)

\(\widehat{ODI}=\widehat{ODB}+\widehat{IDB}\)

\(=\widehat{IBD}+\widehat{DCB}=90^0\)

=>DI là tiếp tuyến của (O)

Phương Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 3 2023 lúc 23:38

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

O là trung điểm của AH

b:

XetΔACB có

BD,CE là đường cao

BD căt CE tại H

=>H là trực tâm

=>AH vuông góc BC

=>K là trung điểm của CB

góc ODK=góc ODH+góc KDH

=góc BHK+góc KBH=90 độ

=>KD là tiếp tuyến của (O)

Phương Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2021 lúc 21:22

a) Xét tứ giác BEDC có 

\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{BDC}\) là hai góc cùng nhìn cạnh BC

Do đó: BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Nguyễn Thanh Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 23:41

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

b: góc EDH=góc BAF

góc FDH=góc ECB

mà góc BAF=góc ECB

nên góc EDH=góc FDH

=>DH là phân giác của góc EDF