Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thiên Long
Xem chi tiết
zZz Cool Kid_new zZz
25 tháng 7 2020 lúc 10:17

Câu 1

a)

Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)

\(\Leftrightarrow x\ge1\)

b)

Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)

c)

Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B

d)

Vô lý vcl

Câu 2

Xài BĐT Bunhiacopski:

\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)

\(\Rightarrow A\le39\)

Khách vãng lai đã xóa
Hoàng Thị Lan Nhi
26 tháng 7 2020 lúc 23:01

Câu 1:

a) A=\(\sqrt{2x^2-3x+1}\)

ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)

b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)

ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)

=>\(x\ge1\)

c) Với \(x\ge1\)thì A=B đc xác định

d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa

Khách vãng lai đã xóa
wary reus
Xem chi tiết
Trần Việt Linh
28 tháng 7 2016 lúc 16:53

a)ĐK:\(\begin{cases}x^2-1\ge0\\x^2-2\sqrt{x^2-1}\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x^2\ge1\\x^2\ge2\sqrt{x^2-1}\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^4\ge4\left(x^2-1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge1\\x^4-4x^2+4\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\\left(x^2-2\right)^2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^2-2\ge0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge1\\x^2\ge2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge\sqrt{2}\end{cases}\)\(\Leftrightarrow x\ge\sqrt{2}\)

b)Có \(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)

\(=\sqrt{\left(x^2-1\right)+2\sqrt{x^2-1}+1}-\sqrt{\left(x^2-1\right)-2\sqrt{x^2-1}+1}\)

\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

\(=\sqrt{x^2-1}+1-\left|\sqrt{x^2-1}-1\right|\)

Vói \(x\ge1\) thì A=\(\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=\sqrt{x^2-1}+1-\sqrt{x^2-1}+1=2\)

Với \(\sqrt{2}< x< 1\) thì 

                \(A=\sqrt{x^2-1}+1-\left(1-\sqrt{x^2-1}\right)=\sqrt{x^2-1}+1-1+\sqrt{x^2-1}=2\sqrt{x^2-1}\)

Intel
Xem chi tiết
Intel
1 tháng 1 2021 lúc 20:16

GIÚP MIK VỚI NHA

Khách vãng lai đã xóa
phạm kim liên
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:59

a: ĐKXĐ: \(x\in R\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)

Nguyễn Hoàng Minh
27 tháng 10 2021 lúc 20:00

\(a,ĐK:x^2+2x+8\ge0\Leftrightarrow\left(x+1\right)^2+7\ge0\Leftrightarrow x\in R\\ b,ĐK:x^2-4x-5\ge0\Leftrightarrow\left(x+1\right)\left(x-5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

Đào Phương Hằng
27 tháng 10 2021 lúc 20:24

a, \(\sqrt{x^2+2x+8}\) = \(\sqrt{x^2+2x+\dfrac{1}{4}+\dfrac{31}{4}}\)\(\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{31}{4}}\)

⇒x ∈ R thì bt được xác định

bad end night
Xem chi tiết
Xem chi tiết
HT.Phong (9A5)
27 tháng 7 2023 lúc 15:06

\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-2\right)^2}}\) 

Có nghĩa khi:

\(\left\{{}\begin{matrix}\dfrac{3x-2}{\left(x-2\right)^2}\ge0\\\left(x-2\right)^2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ne2\end{matrix}\right.\)

____________________

\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)

Có nghĩa khi:

\(\dfrac{2x-3}{2x^2+1}\ge0\)

\(\Leftrightarrow2x-3\ge0\)

\(\Leftrightarrow x\ge\dfrac{3}{2}\)

Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 15:05

a: ĐKXĐ: (3x-2)/(x^2-2x+4)>=0

=>3x-2>=0

=>x>=2/3

b: ĐKXĐ: (2x-3)/(2x^2+1)>=0

=>2x-3>=0

=>x>=3/2

Lê Kiều Trinh
Xem chi tiết
Rin•Jinツ
27 tháng 11 2021 lúc 11:21

\(x>\dfrac{3}{2}\)

myra hazel
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 11 2021 lúc 14:46

\(ĐK:4-\dfrac{2}{7}x\ge0\Leftrightarrow-\dfrac{2}{7}x\ge-4\Leftrightarrow x\le14\)

Đào Phương Linh
2 tháng 11 2021 lúc 16:26

x≤14

Trần Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 19:15

a) Ta có: \(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)