a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)
\(a,ĐK:x^2+2x+8\ge0\Leftrightarrow\left(x+1\right)^2+7\ge0\Leftrightarrow x\in R\\ b,ĐK:x^2-4x-5\ge0\Leftrightarrow\left(x+1\right)\left(x-5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)
a, \(\sqrt{x^2+2x+8}\) = \(\sqrt{x^2+2x+\dfrac{1}{4}+\dfrac{31}{4}}\)= \(\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{31}{4}}\)
⇒x ∈ R thì bt được xác định