a) ĐKXĐ: 4x ≥ 0 ⇔ x ≥ 0
b) ĐKXĐ: 5.(-x) ≥ 0 ⇔ -x ≥ 0 ⇔ x ≤ 0
c) ĐKXĐ: 4 - x² ≥ 0 ⇔ x² ≤ 4 ⇔ -2 ≤ x ≤ 2
d) 4x² - 1 ≥ 0 ⇔ 4x² ≥ 1 ⇔ x² ≥ 1/4 ⇔ -1/2 ≤ x hoặc x ≥ 1/2
a) ĐKXĐ: 4x ≥ 0 ⇔ x ≥ 0
b) ĐKXĐ: 5.(-x) ≥ 0 ⇔ -x ≥ 0 ⇔ x ≤ 0
c) ĐKXĐ: 4 - x² ≥ 0 ⇔ x² ≤ 4 ⇔ -2 ≤ x ≤ 2
d) 4x² - 1 ≥ 0 ⇔ 4x² ≥ 1 ⇔ x² ≥ 1/4 ⇔ -1/2 ≤ x hoặc x ≥ 1/2
Tìm điều kiện xác định của các biểu thức: a) \(\sqrt{\dfrac{-10}{5-4x}}\) b)\(\sqrt{\dfrac{2x-5}{x+2}}\) c)\(\sqrt{2-x^2}\) d)\(\sqrt{1-\sqrt{x-1}}\) |
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
Bài 1: giải p.trình
a,\(\sqrt{x^2-4x+4}=1\)
b,\(\sqrt{1-4x+4x^2}=5\)
c,\(\sqrt{a\left(1-2x+x^2\right)}-6=0\)
d,\(\sqrt{9x^2}=2x+1\)
e,\(\sqrt{9-6x+x^2}=x\)
Giải các phương trình sau:
a) \(\sqrt{1-x^2}=x-1\)
b) \(\sqrt{x^2+4x+4}=x-2\)
c) \(\sqrt{\left(2x+4\right)\left(x-1\right)}=x+1\)
d) \(\sqrt{2x^2+4x-1}=x-2\)
Giải các phương trình sau:
a. \(\sqrt{\left(3x-1\right)^2}=5\)
b. \(\sqrt{4x^2-4x+1}=3\)
c. \(\sqrt{x^2-6x+9}+3x=4\)
d. \(3\sqrt{9x+9}-\sqrt{36x+36}+2\sqrt{4x+4}=12\)
Tìm x biết:
a)\(\sqrt{9x^2}=6\)
b)\(\sqrt{\left(x-2\right)^2}=5\)
c)\(\sqrt{x^2-6x+9}=3\)
d)\(\sqrt{x^2+4x+4}-2x=3\)
với giá trị nào của x thì biểu thức sau đây xác định
a,\(\sqrt{x^2+2x+8}\)
b,\(\sqrt{x^2-4x-5}\)
* Tìm điều kiện để căn thức bậc hai có nghĩa
a. \(\sqrt{3-2x}\)
b. \(\sqrt{\dfrac{-5}{2x+1}}\)
* Giải phương trình
a. \(\sqrt{\left(2x-3\right)^2}=5\)
b. \(\sqrt{9x+9}+\sqrt{4x+4}-\sqrt{16x+16}=3\)
Giải các phương trình sau:
a. \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
b. \(\sqrt{\left(2x-1\right)^2}=4\)
c. \(\sqrt{\left(2x+1\right)^2}=3x-5\)
d. \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)