rút gọn
\(\left(x-\dfrac{x^2+y^2}{x+y}\right)\left(\dfrac{1}{y}+\dfrac{2}{x-y}\right)\)
A= \(\left(\dfrac{x+y}{y}-\dfrac{2y}{y-x}\right):\left(\dfrac{x^2+y^2}{y-x}\right)+\left(\dfrac{x^2+1}{2x-1}-\dfrac{x}{2}\right).\dfrac{1-2x}{x+2}\)
Với điều kiện của x, y để A có nghĩa, hãy rút gọn biểu thức trên
\(A=\dfrac{x^2-y^2+2y^2}{y\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\dfrac{2x^2+2-2x^2+x}{2\left(2x-1\right)}\cdot\dfrac{-\left(2x-1\right)}{x+2}\)
\(=\dfrac{-1}{y}+\dfrac{-1}{2}=\dfrac{-2-y}{2y}\)
Tìm tập xác định, rồi rút gọn biểu thức:
B = \(\dfrac{y-x}{xy}\) : [\(\dfrac{y^2}{\left(x-y\right)^2\left(x+y\right)}\) - \(\dfrac{2x^2y}{x^4-2x^2y^2+y^4}\) + \(\dfrac{x^2}{\left(y^2-x^2\right)\left(x+y\right)}\)]
Tính giá trị của B với x = -\(\dfrac{1}{2}\), y = 2
Rút gọn biểu thức D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
\(D=\dfrac{\left(x^2-y^2\right)\left(x+y\right)}{x}+\dfrac{y^2\left(x+y\right)}{x}\\ D=\dfrac{\left(x^2-y^2\right)\left(x+y\right)+y^2\left(x+y\right)}{x}\\ D=\dfrac{\left(x+y\right)\left(x^2-y^2+y^2\right)}{x}=\dfrac{x^2\left(x+y\right)}{x}=x\left(x+y\right)\)
Rút gọn các biểu thức:
a) {\(\dfrac{1}{x^2}\) + \(\dfrac{1}{y^2}\) + \(\dfrac{2}{x+y}\)(\(\dfrac{1}{x}\) + \(\dfrac{1}{y}\))} : \(\dfrac{x^3+y^3}{x^2y^2}\)
b) {\(\dfrac{1}{\left(2x-y\right)^2}\) + \(\dfrac{2}{4x^2-y^2}\) + \(\dfrac{1}{\left(2x+y\right)^2}\)} . \(\dfrac{4x^2+4xy+y^2}{16x}\)
c) (\(\dfrac{x^2-xy}{x^2y+y^3}\) - \(\dfrac{2x^2}{y^3-xy^2+x^2y-x^3}\))(1 - \(\dfrac{y-1}{x}\) - \(\dfrac{y}{x^2}\))
Rút gọn biểu thức P=\(\sqrt{\dfrac{1}{x^2+y^2}+\dfrac{1}{\left(x+y\right)^2}+\sqrt{\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{\left(x^2+y^2\right)^2}}}\)
Mn giúp e với
Cho biểu thức:
\(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\left(x\ne\pm y\right)\)
1. Rút gọn biểu thức \(C\) ;
2. Khi cho \(\left(x^2-y^2\right)\cdot C=-8\), hãy tính giá trị của biểu thức:
\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\).
1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)
\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)
\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)
2: \(\left(x^2-y^2\right)\cdot C=-8\)
=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)
=>\(\left(x-y\right)^3=-8\)
=>x-y=-2
=>x=y-2
\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)
\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)
\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)
\(=\left(y-1\right)\left(-4y+4\right)+4xy\)
\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)
\(=-4y^2+8y-4+4y^2-8y\)
=-4
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
\(=2x^2-4xy+\dfrac{15}{4}y^2\)
b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
=2x+15
a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)
b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(=2x+15\)
a; \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
= \(x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
= \(2x^2-4xy+\dfrac{15}{4}y^2\)
b; \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
= \(x^2-4x+4+x^2+6x+9-2x^2+2\)
= \(2x+15\)