\(=\dfrac{x^2+xy-x^2-y^2}{x+y}\cdot\dfrac{x-y+2y}{y\left(x-y\right)}\)
\(=\dfrac{y\left(x-y\right)}{x+y}\cdot\dfrac{x+y}{y\left(x-y\right)}=1\)
\(=\dfrac{x^2+xy-x^2-y^2}{x+y}\cdot\dfrac{x-y+2y}{y\left(x-y\right)}\)
\(=\dfrac{y\left(x-y\right)}{x+y}\cdot\dfrac{x+y}{y\left(x-y\right)}=1\)
Rút gọn các biểu thức sau :
a)\(\dfrac{25xy^3\left(2x-y\right)^2}{75xy^2\left(y-2x\right)}\)
b)\(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}\)
c)\(\dfrac{\left(2x+3\right)-x^2}{x^2-1}\)
d)\(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
Rút gọn biểu thức:
\(\dfrac{x^2+xy}{x^2+xy+y^2}\) - [\(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}\) - 2 + \(\dfrac{y}{y-x}\)] : \(\dfrac{x-y}{x}\) - \(\dfrac{x}{x-y}\)
Rút gọn, rồi tính giá trị các phân thức sau : A=\(\dfrac{\left(2x^{2^{ }}+2x^{ }\right)\left(x-2\right)^2}{^{ }\left(x^{3^{ }}-4x\right)\left(x+1\right)}\)với x = \(\dfrac{1}{2}\)
B=\(\dfrac{x^3-x^{2^{ }}y+xy^2}{x^3+y^3}\)với x = -5 , y = 10
Rút gọn phân thức:
1, \(\dfrac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
2, \(\dfrac{x^4-y^4}{x^3+y^3}\)
3, \(\dfrac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\)
4, \(\dfrac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
5, \(\dfrac{x^3-7x+6}{x^2\left(x-3\right)^2+4x\left(3-x\right)^2+4\left(x-3\right)^2}\)
R/gọn: \(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^2}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\right)\)
1. Rút gọn phân thức \(\dfrac{\left(x+y\right)^2}{x^2-y^2}=\) ta được kết quả là:
2. Rút gọn phân thức \(\dfrac{x^2-3x}{x^2-9}=\)
giúp mình với nhé mình đang cần gấp ạ
Rút gọn phân thức :
a) \(\dfrac{x^4-y^4}{y^3-x^3}\)
b) \(\dfrac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}\)
c) \(\dfrac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}\)
Rút gọn phân thức
a,\(\dfrac{\left(x^2-y\right).\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right).\left(y+1\right)+x^2y^2+1}\)
b,\(\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x+y\right)}{x^2y-x^2z+y^2z-y^3}\)
c, \(\dfrac{x^3+3x^2-4}{x^3-3x+2}\)
d , \(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)
Rút gọn phân thức
a) \(\dfrac{6x^2y^2}{8xy^5}\)
b) \(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
c) \(\dfrac{2x^2+2x}{x+1}\)
d) \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)