\(12\sqrt{10}-16\sqrt[]{14}\)
\(\frac{1}{\sqrt{16}-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-\sqrt{9}}\)
Với n > 0 Ta có:
\(\frac{1}{\sqrt{n+1}-\sqrt{n}}=\frac{\sqrt{n+1}+\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}\)
\(=\sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\frac{1}{\sqrt{16}-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+...+\frac{1}{\sqrt{10}-\sqrt{9}}\)
\(=\sqrt{16}+\sqrt{15}-\sqrt{15}-\sqrt{14}+...+\sqrt{10}+\sqrt{9}\)
\(\sqrt{16}+\sqrt{9}=3+4=7\)
giúp em với ạ
\(\sqrt{5
+2\sqrt{ }6}\)
\(\sqrt{12+2\sqrt{ }35}-\sqrt{12-2\sqrt{ }35}\)
\(\sqrt{16+6\sqrt{ }7}\)
\(\sqrt{31-12\sqrt{ }3}\)
\(\sqrt{27+10\sqrt{ }2}\)
\(\sqrt{14+6\sqrt{ }5}\)
a: \(\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)
b: \(\sqrt{12+2\sqrt{35}}-\sqrt{12-2\sqrt{35}}=\sqrt{7}+\sqrt{5}-\sqrt{7}+\sqrt{5}=2\sqrt{5}\)
c: \(\sqrt{16+6\sqrt{7}}=4+\sqrt{7}\)
d: \(\sqrt{31-12\sqrt{3}}=3\sqrt{3}-2\)
e: \(\sqrt{27+10\sqrt{2}}=5+\sqrt{2}\)
f: \(\sqrt{14+6\sqrt{5}}=3+\sqrt{5}\)
Tính:
1) \(\sqrt{14-2\sqrt{33}}\)
2) \(\sqrt{12-2\sqrt{35}}\)
3) \(\sqrt{16-2\sqrt{55}}\)
4) \(\sqrt{14-6\sqrt{5}}\)
5) \(\sqrt{17-12\sqrt{2}}\)
6) \(\sqrt{27-12\sqrt{5}}\)
7) \(\sqrt{4+\sqrt{15}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
Tính:
a) \(\frac{\sqrt{15}-\sqrt{16}}{\sqrt{35}-\sqrt{14}}\)
b)\(\frac{\sqrt{10}-\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)
Giải giúp mình với ạ :((( Cảm ơn bạn đó nhiều lắm :)
Cho mình sửa đề xí ạ!
b) \(\frac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)
Tinh:
a)\(\sqrt{10+2\sqrt{14}}.\sqrt{10+2\sqrt{14}}\)
b)\(\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}\)
\(\sqrt{7+2\sqrt{3}}-\sqrt{7-2\sqrt{3}};\left(\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}\right)^2=7+\sqrt{12}-\sqrt{12}+7-2\sqrt{\left(7+\sqrt{12}\right)\left(7-\sqrt{12}\right)}=14-2\sqrt{37}\Rightarrow\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}=\sqrt{14-2\sqrt{37}}\)
a) \(\sqrt{10+2\sqrt{14}}\cdot\sqrt{10+2\sqrt{14}}\)
\(=\sqrt{\left(10+2\sqrt{14}\right)^2}\)
\(=10+2\sqrt{14}\)
b) \(\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}\)
\(=\sqrt{\left(\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}\right)^2}\)
\(=\sqrt{7+\sqrt{12}+7-\sqrt{12}-2\sqrt{\left(7+\sqrt{12}\right)\left(7-\sqrt{12}\right)}}\)
\(=\sqrt{14-2\sqrt{49-12}}\)
\(=\sqrt{14-2\sqrt{37}}\)
\(\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)
\(\dfrac{\sqrt{6}-\sqrt{15}}{\sqrt{35}-\sqrt{14}}\)
\(\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\)
\(\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{5}}{\sqrt{4}}\)
\(=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{\sqrt{6}-\sqrt{15}}{\sqrt{35}-\sqrt{14}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=-\dfrac{\sqrt{3}}{\sqrt{7}}\)
\(=-\dfrac{\sqrt{21}}{7}\)
____________
\(\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{10}}{2}\)
rút gọn
a,\(\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\) b,\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\) c,\(\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\)
\(a,\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\\ =\dfrac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{\sqrt{2}.\sqrt{4}-\sqrt{3}.\sqrt{4}}\\ =\dfrac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}\\ =\dfrac{\sqrt{5}}{\sqrt{2^2}}\\ =\dfrac{\sqrt{5}}{2}\)
\(b,\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\\ =\dfrac{\sqrt{5}.\sqrt{3}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}\\ =\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\\ =\dfrac{\sqrt{3}}{\sqrt{7}}\)
\(c,\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}=\dfrac{\sqrt{5}}{\sqrt{2}}\)
\(a,=\dfrac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{2\sqrt{2}-2\sqrt{3}}\\ =\dfrac{\sqrt{5}.\left(\sqrt{2}-\sqrt{3}\right)}{2\left(\sqrt{2}-\sqrt{3}\right)}\\ =\dfrac{\sqrt{5}}{2}\)
\(b,=\dfrac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\\ =\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\\ =\dfrac{\sqrt{3}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7}\)
\(c,=\dfrac{\sqrt{5}.\sqrt{5}+\sqrt{5}}{\sqrt{2}.\sqrt{5}+\sqrt{2}}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\\ =\dfrac{\sqrt{5}}{\sqrt{2}}=\dfrac{\sqrt{10}}{2}\)
Tính và rút gọn :
1) \(\sqrt{14+2\sqrt{33}}\)
2) \(\sqrt{29-12\sqrt{5}}\)
3) \(\sqrt{16+2\sqrt{55}}\)
4) \(\sqrt{13+4\sqrt{10}}\)
5) \(\sqrt{36+12\sqrt{5}}\)
6) \(\sqrt{21-6\sqrt{6}}\)
Bạn xem lại câu 5 xem có sai đề không chứ mình tính mãi không ra
1. \(\sqrt{14+2\sqrt{33}}=\sqrt{\left(\sqrt{11}+\sqrt{3}\right)^2}=\sqrt{11}+\sqrt{3}\)
2. \(\sqrt{29-12\sqrt{5}}=\sqrt{\left(\sqrt{20}-\sqrt{9}\right)^2}=2\sqrt{5}-3=-3+2\sqrt{5}\)
3. \(\sqrt{16+2\sqrt{55}}=\sqrt{\left(\sqrt{11}+\sqrt{5}\right)^2}=\sqrt{11}+\sqrt{5}\)
4. \(\sqrt{13+4\sqrt{10}}=\sqrt{\left(\sqrt{8}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)
5. \(\sqrt{36+12\sqrt{5}}=\sqrt{\left(\sqrt{30}+\sqrt{6}\right)^2}=\sqrt{30}+\sqrt{6}\)
6. \(\sqrt{21-6\sqrt{6}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=3\sqrt{2}-\sqrt{3}=-\sqrt{3}+3\sqrt{2}\)
P/s: Đây là dạng toán căn lồng căn, được dùng máy tính để biến đổi thành căn bình phương, nếu bạn chưa biết thì search gg nhé.
So sánh A = 2\(\sqrt{1}+2\sqrt{3}+2\sqrt{5}+2\sqrt{7}+2\sqrt{9}+2\sqrt{11}+2\sqrt{13}+2\sqrt{15}+2\sqrt{17}+2\sqrt{19}\) và B = \(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+2\sqrt{8}+2\sqrt{10}+2\sqrt{12}+2\sqrt{14}+2\sqrt{16}+2\sqrt{18}+2\sqrt{20}\)