Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Dương
Xem chi tiết
Akai Haruma
17 tháng 12 2021 lúc 23:04

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

Akai Haruma
17 tháng 12 2021 lúc 23:07

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
13 tháng 9 2023 lúc 0:00

a) Phương trình \(7x + \dfrac{4}{7} = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số.

Khi đó, \(a = 7;b = \dfrac{4}{7}\).                      

b) \(\dfrac{3}{2}y - 5 = 4\)

\(\dfrac{3}{2}y - 5 - 4 = 0\)

\(\dfrac{3}{2}y - 9 = 0\)

Phương trình \(\dfrac{3}{2}y - 9 = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ay + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(y\) là ẩn số.

Khi đó, \(a = \dfrac{3}{2};b =  - 9\)

c) Phương trình \(0t + 6 = 0\) không là phương trình bậc nhất một ẩn.

Mặc dù phương trình đã cho có dạng   \(at + b = 0\) với \(a\) và \(b\) là các hệ số đã cho nhưng \(a = 0\).    

d) Phương trình \({x^2} + 3 = 0\) không là phương trình bậc nhất một ẩn vì không có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số (do có \({x^2}\)).

Tâm Nguyễn
Xem chi tiết
Tâm Nguyễn
Xem chi tiết
Đoàn Đỗ Đăng Khoa
Xem chi tiết
Ngô Bá Hùng
8 tháng 3 2022 lúc 21:29

\(1+\sqrt{2}\) kia là cái j nhỉ

Thầy Cao Đô
Xem chi tiết
Đỗ Đình	Dũng
14 tháng 5 2021 lúc 21:54

Khách vãng lai đã xóa
Nguyễn Thị	Nguyệt
18 tháng 5 2021 lúc 14:48
Khách vãng lai đã xóa
Nguyễn Thùy Dung
23 tháng 6 2021 lúc 16:03

1.

Vì đồ thị hàm số đi qua điểm M(1;-1) nên a+b = -1.

và đi qua điểm N(2;1) nên 2a + b = 1.

Ta có hệ phương trình \left\{ \begin{aligned} & a + b = -1\\ & 2a + b = 1\\ \end{aligned}\right. \Leftrightarrow \left\{ \begin{aligned} & a = 2\\ & b = -3\\ \end{aligned}\right..

Vậy hàm số cần tìm là y = 2x - 3.

2.a

Với m = 4, phương trình (1) trở thành: x^2 - 8x + 15 = 0.

\Delta = 1 > 0 nên phương trình có hai nghiệm phân biệt x_1 = 3 và x_2 = 5.

2.b.

Ta có \Delta ' = (-m)^2 - 1.(m^2-m+3) = m^2 - m^2 + m -3 = m - 3.

Phương trình (1) có hai nghiệm x_1x_2 khi \Delta ' \ge 0 \Leftrightarrow m \ge 3.

Với m \ge 3, áp dụng định lí Vi-et \left\{ \begin{aligned} & x_1 + x_2 = 2m\\ & x_1x_2 = m^2 - m + 3\\ \end{aligned}\right.

Ta có: P = m^2 - m + 3 - 2m = m(m-3) + 3.

Vì m \ge 3 nên m(m-3) \ge 0 suy ra P \ge 3.

Dấu "=" xảy ra khi và chỉ khi m = 3.

Khách vãng lai đã xóa
NTL 2492161
Xem chi tiết
Lê Ng Hải Anh
25 tháng 4 2021 lúc 21:58

undefined

thánh yasuo lmht
Xem chi tiết