xác định hệ số a,b,c của phương trình bậc y= ax^2 +bx+c biết phương trình đi qua 3 điểm(0;-4), (1;0),(2;6)
câu 1: xác định hàm số bậc hai y = \(2x^2\)+ bx +c , biết rằng đồ thị của nó có đỉnh là I ( -1 ; 0)
câu 2 : xác định phương trình (P) y=\(ax^2\)+ bx+c đi qua ba điểm A ( 0:-1) B ( 1:-1) C ( -1:1)?
Câu 1:
Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)
Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix}
-1=a.0^2+b.0+c\\
-1=a.1^2+b.1+c\\
1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
c=-1\\
a+b+c=-1\\
a-b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)
Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn? Xác định các hệ số \(a\) và \(b\) của phương trình bậc nhất một ẩn đó.
a) \(7x + \dfrac{4}{7} = 0\);
b) \(\dfrac{3}{2}y - 5 = 4\);
c) \(0t + 6 = 0\);
d) \({x^2} + 3 = 0\).
a) Phương trình \(7x + \dfrac{4}{7} = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số.
Khi đó, \(a = 7;b = \dfrac{4}{7}\).
b) \(\dfrac{3}{2}y - 5 = 4\)
\(\dfrac{3}{2}y - 5 - 4 = 0\)
\(\dfrac{3}{2}y - 9 = 0\)
Phương trình \(\dfrac{3}{2}y - 9 = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ay + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(y\) là ẩn số.
Khi đó, \(a = \dfrac{3}{2};b = - 9\)
c) Phương trình \(0t + 6 = 0\) không là phương trình bậc nhất một ẩn.
Mặc dù phương trình đã cho có dạng \(at + b = 0\) với \(a\) và \(b\) là các hệ số đã cho nhưng \(a = 0\).
d) Phương trình \({x^2} + 3 = 0\) không là phương trình bậc nhất một ẩn vì không có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số (do có \({x^2}\)).
cho phương trình bậc 2:ax^2+bx+c=0 (a,b,c là số hữu tỉ và a khác 0).cho biết phương trình 1+√2 .tìm nghiệm phương trình
1. Xác định hàm số bậc nhất $y = ax + b$ biết rằng đồ thị của hàm số đi qua hai điểm $M(1; -1)$ và $N(2;1)$.
2. Cho phương trình $x^2 - 2mx + m^2 - m + 3 = 0$ (1), trong đó $m$ là tham số.
a. Giải phương trình (1) với $m = 4$.
b. Tìm giá trị của $m$ để phương trình (1) có hai nghiệm $x_1$; $x_2$ và biểu thức $P = x_1 x_2 - x_1 - x_2$ đạt giá trị nhỏ nhất.
1.
Vì đồ thị hàm số đi qua điểm nên
và đi qua điểm nên .
Ta có hệ phương trình .
Vậy hàm số cần tìm là
2.a
Với , phương trình trở thành: .
nên phương trình có hai nghiệm phân biệt và .
2.b.
Ta có .
Phương trình (1) có hai nghiệm , khi
Với , áp dụng định lí Vi-et
Ta có: .
Vì nên suy ra .
Dấu "=" xảy ra khi và chỉ khi
Xác định phương trình của đường thẳng (d):y=ax+b biết đường thẳng (d) đi qua điểm A(-1;2) và điểm B(3; -2).
Xét các phương trình bậc 2 \(ax^2+bx+c=0\) với các hệ số a, b, c là những số nguyên dương không vượt quá 100. Hỏi số các phương trình có nghiệm và các phương trình vô nghiệm, số nào lớn hơn ?