Tìm các số có bốn chữ số \(\overline{2a7b}\) cùng chia hết cho 5 và 9.
Tìm số tự nhiên có bốn chữ số \(\overline{abcd}\), biết rằng nó là một số chính phương, số \(\overline{abcd}\) chia hết cho \(9\) và \(d\) là một số nguyên tố.
\(\overline{abcd}⋮9\) (d là số nguyên tố)
\(\Rightarrow d\in\left\{3;5;7\right\}\)
mà \(\overline{abcd}\) là số chính phương
\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)
\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)
mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)
\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)
\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)
Số chính phương có bốn chữ số. Số chính phương có bốn chữ số có thể là 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.
- Nếu tổng các chữ số là 9, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 18, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 27, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 36, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 45, thì số abcd
chia hết cho 9.
Ví dụ: Giả sử ta tìm số tự nhiên có bốn chữ số abcd
, biết rằng nó là một số chính phương, số abcd
chia hết cho 9 và d là một số nguyên tố.
- Ta tìm số chính phương có bốn chữ số: 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.
- Ta kiểm tra số abcd
chia hết cho 9. Ví dụ, nếu ta chọn số 2025, tổng các chữ số là 2 + 0 + 2 + 5 = 9, nên số 2025 chia hết cho 9.
- Ta kiểm tra d có phải là số nguyên tố. Ví dụ, nếu ta chọn số 2025, d = 5 không chia hết cho bất kỳ số nguyên tố nào từ 2 đến căn bậc hai của 5, nên d = 5 là số nguyên tố.
- Kết hợp các kết quả từ các bước trên, ta có số tự nhiên thỏa mãn yêu cầu đề bài là 2025.
A = \(\overline{abcd}\)
+ vì A là một số chính phương nên \(d\) = 0; 1; 4; 5;6; 9
+ Vì \(d\) là số nguyên tố nên \(d\) = 5
+ Vì A là số chính phương mà số chính phương có tận cùng bằng 5 thì chữ số hàng chục là: 2 ⇒ c =2
+ Vì A ⋮ 9 ⇒ a + b + c + d \(⋮\) 9
⇔ a + b + 2 + 5 ⋮ 9 ⇒ a + b = 2; 11
a + b = 2⇒ (a; b) =(1; 1); (2; 0) ⇒ \(\overline{abcd}\) = 1125; 2025
a + b = 11 ⇒(a;b) =(2;9); (3;8); (4; 7); (5; 6); (6;5); (7;4); (8; 3); (9;2)
⇒ \(\overline{abcd}\) = 2925; 3825; 4725; 5625; 6525; 7425; 8325; 9225
Vì 2025 = 452; 5625 = 752 vậy số thỏa mãn đề bài là: 2025 và 5625
Tìm các số có bốn chữ số dạng 3a6b cùng chia hết cho 5 và 9
- Chia hết cho 5 nên b phải là 0 hoặc 5 --> có 2 số là 3a60 hoặc 3a65
- Chia hết cho 9 nên a + 3 + 6 + b phải chia hết cho 9, ta có 2 trường hợp:
TH1: b=0 ta có: a + 3 + 6 + 0 = a + 9a + 9 chia hết cho 9 khi a = 0 hoặc a = 9 --> Có 2 số là 3060 hoặc 3960
TH2: b=5 ta có: a + 3 + 6 + 5 = a +14a + 14 chia hết cho 9 khi a = 4 --> Có số 3465
Vậy có 3 số tìm được: 3060, 3960, 3465
Tìm các chữ số x, y biết:
a) \(\overline {12x02y} \) chia hết cho cả 2; 3 và 5.
b) \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2.
a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.
=> y = 0
\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.
Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3
=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)
=> x\( \in \) {1; 4; 7}
Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.
b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5
=> y = 5
\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9
Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9
=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)
=> x = 3.
Vậy \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.
Tìm số 2a7b,biết số đó chia hết cho cả 2 và 9 còn khi chia cho 5 thì dư 2.
Những số chia cho 5 dư 2 là số 2 hoặc 7 ma số đó chia hết cho 2 nên b sẽ là 2
Thay vào ta có: 2a72
Số trên là số chia hết cho 9 mà 2+7+2=11. 11 phải cộng với 7 nữa mới chia hết
Vậy số đó là 2727
chia 5 dư 2 có chữ số tận cùng bằng 7 hoặc 2
chia hết cho 2 nên chữ số tận cùng là 2=>b=2
chi hết cho 9 thì tổng các chữ số chia hết cho 9=>(2+a+7+2)chia hết cho 9=>a=7
vậy số cần tìm là 2772
Cho số tự nhiên 5a3b, biết số đó chia cho 2 dư 1 nhưng chia hết cho cả 5 và 9.
Số cần tìm là
1. Có bao nhiêu số có bốn chữ số chia hết cho 9 mà có chữ số tận cùng bằng 9
2. Cho số 12a4b. Hãy tìm các chữ số a,b để số đã cho chia hết cho 2, cho 3, cho 5
HELP ME
2. 12a4b chia hết cho 2 => b\(\in\){0;2;4;6;8}. Mà 12a4b chia hết cho5 => b=0
Ta được: 12a4b=12a40 . 12a40 chia hết cho 3 => 1+2+a+4+0 chia hết cho 3 => 7+a chia hết cho 3
Mà a là chữ số => a\(\in\){2;5;8}
Vậy 12a4b=12240 khi a=2, b=0
12a4b=12540 khi a=5, __
12a4b=12840 khi a=8, __
Tìm các chữ số tự nhiên a, b sao cho
a) \(\overline{163a}\) ⋮ 3 và 5 b)\(\overline{712a4b}\) chia hết cho cả 2,3,5,và 9
a) Để \(\overline{163a}\) chia hết cho 5 thì \(a\in\left\{0;5\right\}\)
Mà số đó lại chia hết cho 3 nên: \(1+6+3+a=10+a\) ⋮ 3
Với a = 0 thì 10 + 0 = 10 không chia hết cho 3 (loại)
Với a = 5 thì 10 + 5 = 15 ⋮ 3 (nhận)
Vậy a = 5
b) Để \(\overline{712a4b}\) chia hết cho 2 và 5 thì \(b=0\)
Số đó có dạng \(\overline{712a40}\)
Mà số đó lại chia hết cho 3 và 9 nên: \(7+1+2+a+4+0=14+a\) ⋮ 9
\(14+a=18\Rightarrow a=4\)
Vậy (a;b) = (4;0)
a) Tìm số lẻ lớn nhất có bốn chữ số có tổng bốn chữ số bằng 19 và chia hết cho 5.
b) Tìm số chẵn lớn nhất có bốn chữ số có tổng các chữ số bằng 19 và chia hết cho 5
Số có 4 chữ số có dạng: \(\overline{abcd}\)
Vì số đó chia hết cho 5 nên \(d\) = 0; 5
Vì đó là số lẻ nên \(d\) = 5
Tổng các chữ số còn lại là: 19 - 5 = 14
Để được số lớn nhất thì chữ số hàng càng cao phải càng lớn
Từ lập luận trên ta chọn \(a\) là 9
Tổng các chữ số còn lại là: 14 - 9 = 5
chọn \(b\) là \(5\) thì \(c\) = 5 - 5 = 0
Thay \(a=\) 9; \(b\) = 5; \(c\) = 0; \(d\) = 5 vào biểu thức \(\overline{abcd}\) ta được
\(\overline{abcd}\) = 9505
Vậy số lẻ lớn nhất có 4 chữ số mà tổng các chữ số bằng 19 và chia hết cho 5 là 9505
b, Số có 4 chữ số có dạng: \(\overline{abcd}\)
Vì số đó chia hết cho 5 nên \(d\) = 0; 5
vì đó là số chẵn nên \(d\) = 0
Tổng các chữ số còn lại là 19 - 0 = 19
Để được số lớn nhất thì chữ số hàng càng cao phải càng lớn
Từ lập luận trên ta chọn \(a\) = 9
Tổng các chữ số còn lại là: 19 - 9 = 10
Chọn \(b\) = 9 thì c = 10 - 9 = 1
Thay \(a=9\); \(b\) = 9; \(c\) = 1; \(d\) = 0 vào biểu thức: \(\overline{abcd}\) ta có:
\(\overline{abcd}\) = 9910
Vậy số chãn lớn nhất có 4 chữ số mà tổng các chữ số bằng 19 và chia hết cho 5 là : 9910
Đáp số a, 9505
b, 9910
1, Một phép chia có thương bằng 82, số dư bằng 47, số bị chia nhỏ hơn 4000. Tìm số chia
2, CMR: Nếu 2 số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
3, CMR: Số có dạng \(\overline{aaa}\) bao giờ cũng chia hết cho 37
4, CMR: Với mọi số tự nhiên n thì tích (n+3) x (n+6) chia hết cho 2
5, Tìm các chữ số a và b sao cho a-b=4 và \(\overline{87ab}\) chia hết cho 9
Giúp mk nha các bn
Những số có tận cùng là 0, 2, 4, 6, 8 thì chia hết cho 2. 2. Những số có tân cùng là 0 hoặc 5 thì chia hết cho 5. 3. Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3. 4. Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9. 5. Các số có hai chữ số tận cùng lập thành số chia hết cho 4 thì chia hết cho 4. 6. Các số có hai chữ số tận cùng lập thành số chia hết cho 25 thì chia hết cho 25. 7. Các số có 3 chữ số tận cùng lập thành số chia hết cho 8 thì chia hết cho 8. 8. Các số có 3 chữ số tận cùng lập thành số chia hết cho 125 thì chia hết cho 125. 9. a chia hết cho m, b cũng chia hết cho m (m > 0) thì tổng a + b và hiệu a - b (a > b) cũng chia hết cho m.
II. Bài tập
1 324a4b đồng thời chia hết cho 2, cho 3 và cho 5
2
a)632ab đồng thời chia hết cho 2, cho 3 và cho 5
3
a) 33aab đồng thời chia hết cho 2, cho 5 và cho 9.
4
a) 4a69b đồng thời chia hết cho 2, cho 5 và cho 9
5
a) 4a69b đồng thời chia hết cho 2 và 9
6
Hãy tìm các chữ số x, y sao cho 17x8y chia hết cho 5 và 9
7 Tìm chữ số x, y để số 45x7y chia hết cho cả 2, 3, 5 và 9