Một lớp có 10 học sinh nam và 15 học sinh nữ. Chọn ngẫu nhiên 5 học sinh. Tính xác suất trong các trường hợp: a) có ít nhất 2 nam trong số được chọn. b) có ít nhất một sinh viên năm được chọn c) chọn được số năm nhiều hơn số nữ
Chọn ngẫu nhiên 5 học sinh trong một lớp học gồm 25 nam và 20 nữ. Gọi A là biến cố “Trong 5 học sinh được chọn có ít nhất 1 học sinh nữ”. Xác suất của biến cố A là:
A. P A = C 20 5 C 45 5
B. P A = 20 . C 25 4 C 45 5
C. P A = 20 . C 44 4 C 45 5
D. P A = 1 - C 25 5 C 45 5
Một nhóm gồm 10 học sinh trong đó có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 3 học sinh từ nhóm 10 học sinh đó đi lao động. Tính xác suất để trong 3 học sinh được chọn có ít nhất một học sinh nữ
A. 2 3
B. 17 48
C. 17 24
D. 4 9
Một nhóm gồm 10 học sinh trong đó có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 3 học sinh từ nhóm 10 học sinh đó đi lao động. Tính xác suất để trong 3 học sinh được chọn có ít nhất một học sinh nữ.
A. 2 3 .
B. 17 48 .
C. 17 24 .
D. 4 9 .
Đáp án C.
Phương pháp giải: Áp dụng các quy tắc đếm cơ bản
Lời giải:
Chọn 3 học sinh trong 10 học sinh có C 10 3 cách => n ( Ω ) = C 10 3 = 120 .
Gọi X là biến cố trong 3 học sinh được chọn có ít nhất một học sinh nữ
Ta xét các trường hợp sau:
TH1. Chọn 1 học sinh nữ và 2 học sinh nam => có C 7 2 . C 3 1 = 63 cách.
TH2. Chọn 2 học sinh nữ và 1 học sinh nam => có C 7 1 . C 3 2 = 21 cách.
TH3. Chọn 3 học sinh nữ và 0 học sinh nam => có C 3 3 = 1 cách.
Suy ra số kết quả thuận lợi cho biến cố X là n(X) = 63 + 21 + 1 = 85.
Vậy xác suất cần tính là P = n ( X ) n ( Ω ) = 85 120 = 17 24 .
Một nhóm gồm 10 học sinh trong đó có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 3 học sinh từ nhóm 10 học sinh đi tham gia chương trình áo ấm vùng cao. Tính xác suất để 3 học sinh được chọn có ít nhất một học sinh nữ.
`n(\Omega)=C_10 ^3`
Gọi `\overline A:"` Chọn `3` h/s mà trong đó không có h/s nữ`."`
`=>n(\overline A)=C_7 ^3`
`=>P(A)=1-[C_7 ^3]/[C_10 ^3]=17/24`
Lớp 3A có 15 học sinh nam và 30 học sinh nữ.
a) Hỏi có bao nhiêu cách chọn một nhóm 5 học sinh sao cho vừa có nam vừa có nữ.
b) Chọn ngẫu nhiên 4 học sinh. Tính xác suất sao cho chọn được số nam nhiều hơn nữ.
c) Giả sử Lan là 1 trong 30 nữ. Chọn ngẫu nhiên 3 học sinh. Biết rằng Lan được chọn. Tính xác suất chọn được 3 nữ.
Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiểm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam.
\(\Omega \) là tập tất cả 6 học sinh trong 12 học sinh. Vậy \(n\left( \Omega \right) = C_{12}^6 = 924\).
Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có \(C_7^3\) cách chọn chọn 3 học sinh nam và \(C_5^3\) cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có \(C_7^3.C_5^3 = 350\) cách chọn 3 học sinh nam và 3 học sinh nữ tức là \(n\left( C \right) = 350\).Vậy \(P\left( C \right) = \frac{{350}}{{924}} \approx 0,3788\).
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có ít nhất một nữ
A. 1 15
B. 8 15
C. 7 15
D. 1 15
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có ít nhất một nữ.
A. 1 15
B. 8 15
C. 7 15
D. 1 5
Lớp 7 A có 15 học sinh nữ và 25 học sinh nam. Chọn ra ngẫu nhiên một học sinh trong lớp. Tìm số phần tử của tập hợp E gồm các kết quả có thể xảy ra đối với học sinh được chọn ra. Sau đó, hãy tính xác suất của mỗi biến cố sau: a) “Học sinh được chọn ra là học sinh nữ”; b) “Học sinh được chọn ra là học sinh nam”;
a: n(E)=40
A là biến cố "học sinh được chọn ra là nữ"
n(A)=15
=>P(A)=15/40=3/8
b: biến cố học sinh được chọn ra là nam là biến cố đối của biến cố học sinh được chọn ra là nữ
=>P=1-3/8=5/8