\(2\times(x-\dfrac{1}{2})=3\dfrac{1}{3}\)
Bài 2: Tìm x:
a)\(\dfrac{x-1}{27}\)=\(\dfrac{-3}{1-x}\) c)\(3\times x=2\times y\) và\(x-2\times y=8\)
b)\(\dfrac{4}{5}\)-\(\left|x-\dfrac{1}{2}\right|\)=\(\dfrac{3}{4}\) d)\(\dfrac{x-1}{2005}\)=\(\dfrac{3-y}{2006}\) và x-4009=y
a: \(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
>; <; =?
a) \(\dfrac{2}{3}\times\dfrac{4}{5}\) \(\dfrac{4}{5}\times\dfrac{2}{3}\)
b) \(\left(\dfrac{1}{3}\times\dfrac{2}{5}\right)\times\dfrac{3}{4}\) \(\dfrac{1}{3}\times\left(\dfrac{2}{5}\times\dfrac{3}{4}\right)\)
c) \(\left(\dfrac{1}{3}+\dfrac{2}{15}\right)\times\dfrac{3}{4}\) \(\dfrac{1}{3}\times\dfrac{3}{4}+\dfrac{2}{15}\times\dfrac{3}{4}\)
a) \(\dfrac{2}{3}\times\dfrac{4}{5}=\dfrac{4}{5}\times\dfrac{2}{3}\)
b) \(\left(\dfrac{1}{3}\times\dfrac{2}{5}\right)\times\dfrac{3}{4}=\dfrac{1}{3}\times\left(\dfrac{2}{5}\times\dfrac{3}{4}\right)\)
c) \(\left(\dfrac{1}{3}-\dfrac{2}{15}\right)\times\dfrac{3}{4}=\dfrac{1}{3}\times\dfrac{3}{4}+\dfrac{2}{15}\times\dfrac{3}{4}\)
a) \(\dfrac{-2}{15}\times x=\dfrac{-2}{7}\) b) \(\dfrac{7}{-5}\times x=-3\) c) \(-\dfrac{4}{9}x=\dfrac{1}{2}\) d) \(\dfrac{8}{3}\div x=\dfrac{-3}{8}\)
e) \(x\div\dfrac{3}{-4}=-12\) f) \(\left(-1\right)\div x=\dfrac{-3}{7}+\dfrac{4}{5}\) g)\(\dfrac{4}{11}x-\dfrac{1}{3}=\dfrac{2}{5}\) i) \(\dfrac{-6}{7}-\dfrac{1}{5}x=-4\)
j) \(\dfrac{1}{2}+\dfrac{2}{3}\div7=\dfrac{-1}{3}\) k) \(\dfrac{-5}{2}+x\div7=\dfrac{-1}{3}\) L) \(\dfrac{-3}{2}-\dfrac{1}{4}\div x=-1\)
a: =>x*2/15=2/7
=>x=2/7:2/15=2/7*15/2=15/7
b: x=3:7/5=15/7
c: x=-1/2:4/9=-1/2*9/4=-9/8
d: x=-8/3:3/8=-64/9
g: =>4/11x=2/5+1/3=6/15+5/15=11/15
=>x=11/15:4/11=121/60
l: =>1/4:x=1-3/2=-1/2
=>x=-1/4:1/2=-1/4*2=-1/2
k: =>x:7=-1/3+5/2=-2/6+15/6=13/6
=>x=91/6
\(\dfrac{1}{\begin{matrix}1\times&2\end{matrix}}+\dfrac{1}{\begin{matrix}2\times&3\end{matrix}}+\dfrac{1}{\begin{matrix}3\times&4\end{matrix}}+...........+\dfrac{1}{x\times\left(x+1\right)}=\dfrac{996}{997}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{996}{997}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)= \(\dfrac{996}{997}\) \(1-\dfrac{1}{x+1}\) = \(\dfrac{996}{997}\)
\(\dfrac{1}{x+1}\) = \(1-\dfrac{996}{997}\)
\(\dfrac{1}{x+1}\) =\(\dfrac{1}{997}\)
\(\Rightarrow\) x + 1 = 997
x = 997 - 1
x = 996
Vậy x = 996
Tìm x biết
1) \(\left|\dfrac{1}{4}\times x^2+\dfrac{1}{45}\right|+\dfrac{1}{5}=\dfrac{1}{4}\)
2) \(\left(x^2-3\right)\times x^2-2\times x\times\left(x^2-3\right)\)
1: =>|1/4x^2+1/45|=1/20
=>1/4x^2+1/45=1/20 hoặc 1/4x^2+1/45=-1/20
=>1/4x^2=1/36
=>x^2=1/36:1/4=1/9
=>x=1/3 hoặc x=-1/3
2: =(x^2-3)(x^2-2x)
=x(x-2)(x^2-3)
thực hiện phép tính
a)\(\dfrac{x^3}{x^2+1975}\times\dfrac{2x+1954}{x+1}+\dfrac{x^3}{x^2+1975}\times\dfrac{21-x}{x+1}\)
b)\(\dfrac{19x+8}{x-7}\times\dfrac{5x-9}{x+1945}+\dfrac{19x+8}{x^2+1945}\times\dfrac{1x-2}{x-7}\)
c) \(\dfrac{x+1}{x^2-2x-8}\times\dfrac{4-x}{x^2+x}\)
a/ \(\dfrac{x^3}{x^2+1975}\cdot\dfrac{2x+1954}{x+1}+\dfrac{x^3}{x^2+1975}\cdot\dfrac{21-x}{x+1}=\dfrac{x^3\left(2x+1954\right)+x^3\left(21-x\right)}{\left(x^2+1975\right)\left(x+1\right)}=\dfrac{2x^4+1954x^3+21x^3-x^4}{\left(x^2+1975\right)\left(x+1\right)}=\dfrac{x^4+1975x^3}{\left(x^2+1975\right)\left(x+1\right)}\)
b/ \(\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9}{x+1945}+\dfrac{19x+8}{x^2+1945}\cdot\dfrac{x-2}{x-7}=\dfrac{\left(19x+8\right)\left(5x-9\right)+\left(19x+8\right)\left(x-2\right)}{\left(x-7\right)\left(x+1945\right)}=\dfrac{\left(19x+8\right)\left(5x-9+x-2\right)}{\left(x-7\right)\left(x+1945\right)}=\dfrac{114x^2-209x+40x-88}{\left(x-7\right)\left(x+1945\right)}=\dfrac{114x^2-169x-88}{x^2+1938x-13615}\)
c/ \(\dfrac{x+1}{x^2-2x-8}\cdot\dfrac{4-x}{x^2+x}=\dfrac{\left(x+1\right)\left(4-x\right)}{x\left[x^2-4x+2x-8\right]\left(x+1\right)}=-\dfrac{x-4}{x\left(x-4\right)+2\left(x-4\right)}=-\dfrac{x-4}{\left(x-4\right)\left(x+2\right)}=-\dfrac{1}{x+2}\)
\(3\dfrac{7}{8}\times x-2\dfrac{3}{4}=3\dfrac{6}{12}\times\dfrac{10}{8}-\dfrac{1}{3}\)
Tìm x
a.\(\dfrac{2}{3}\times\dfrac{1}{4}-\dfrac{1}{3}\times\dfrac{1}{2}\) =
b.\(\dfrac{8}{5}\times\dfrac{1}{4}-\dfrac{2}{5}\times\dfrac{1}{2}-\dfrac{1}{2}\times\dfrac{1}{5}=\)
giải rõ ràng cho mình nhé
a) \(\dfrac{2}{3}\times\dfrac{1}{4}-\dfrac{1}{3}\times\dfrac{1}{2}=\dfrac{2}{12}-\dfrac{1}{6}=\dfrac{1}{6}-\dfrac{1}{6}=\dfrac{0}{6}=0\)
b) \(\dfrac{8}{5}\times\dfrac{1}{4}-\dfrac{2}{5}\times\dfrac{1}{2}-\dfrac{1}{2}\times\dfrac{1}{5}=\dfrac{8}{20}-\dfrac{2}{10}-\dfrac{1}{10}=\dfrac{4}{10}-\dfrac{2}{10}-\dfrac{1}{10}=\dfrac{4-2-1}{10}=\dfrac{1}{10}\)
a. 1/6 - 1/6 = 0 (hoặc 2/12 - 1/6= 2/12 - 2/12 = 0)
b. 4/5 - 1/2 x ( 2/5 - 1/5 ) = 4/5 - 1/2 x 1/5
= 4/5 x 2/10
= 4/25
\((\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}+\dfrac{1}{10})\times x=\dfrac{1}{9}+\dfrac{2}{8}+\dfrac{3}{7}+...+\dfrac{8}{2}+\dfrac{9}{1}\)
`#iv`
`(1/2 +1/3 +1/4 +... +1/10)*x=1/9 + 2/8 + 3/7 +... +9/1`
`=>(1/2+1/3+1/4+...+1/10)*x=10*(1/10 + 1/9+1/8+1/7+...+1/2)`
`=>x=10*(1/10 + 1/9+1/8+1/7+...+1/2):(1/10 + 1/9+1/8+1/7+...+1/2)`
`=>x=10`
Vậy `x=10`
thực hiện phép tính
a)\(\dfrac{2x^2-20x+50}{3x+3}\times\dfrac{x^2-1}{4\left(x-5\right)^2}\)
b) \(\dfrac{6x-3}{5x^2+x}\times\dfrac{25x^2+10x+1}{1-8x^3}\)
c) \(\dfrac{3x^2-x}{x^2-1}\times\dfrac{1-x^4}{\left(1-3x\right)^3}\)
a/ \(\dfrac{2x^2-20x+50}{3x+3}\cdot\dfrac{x^2-1}{4\left(x-5\right)^2}=\dfrac{2\left(x^2-10x+25\right)\cdot\left(x^2-1\right)}{3\left(x+1\right)\cdot4\left(x-5\right)^2}=\dfrac{2\left(x-5\right)^2\left(x-1\right)\left(x+1\right)}{12\left(x+1\right)\left(x-5\right)^2}=\dfrac{x+1}{6}\)
b/ \(\dfrac{6x-3}{5x^2+x}\cdot\dfrac{25x^2+10x+1}{1-8x^2}=-\dfrac{3\left(1-2x\right)\cdot\left(5x+1\right)^2}{x\left(5x+1\right)\left(1-2x\right)\left(1+2x+4x^2\right)}=\dfrac{3\left(5x+1\right)}{x\left(4x^2+2x+1\right)}\)
c/ \(\dfrac{3x^2-x}{x^2-1}\cdot\dfrac{1-x^4}{\left(1-3x\right)^3}=\dfrac{x-3x^2}{1-x^2}\cdot\dfrac{\left(1-x^2\right)\left(1+x^2\right)}{\left(1-3x\right)^3}=\dfrac{x\left(1-3x\right)\left(1-x^2\right)\left(1+x^2\right)}{\left(1-x^2\right)\left(1-3x\right)^3}=\dfrac{x\left(x^2+1\right)}{\left(1-3x\right)^3}\)
Dễ thế mà bạn ( người ko quen) ko làm đc !