\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{996}{997}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)= \(\dfrac{996}{997}\) \(1-\dfrac{1}{x+1}\) = \(\dfrac{996}{997}\)
\(\dfrac{1}{x+1}\) = \(1-\dfrac{996}{997}\)
\(\dfrac{1}{x+1}\) =\(\dfrac{1}{997}\)
\(\Rightarrow\) x + 1 = 997
x = 997 - 1
x = 996
Vậy x = 996