Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sin Jieunn
Xem chi tiết
Quynh Anh Dang
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 22:35

a: \(B=\dfrac{x-2\sqrt{x}}{\sqrt{x}-2}-\dfrac{2x+12\sqrt{x}+18}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}-\dfrac{2\left(x+6\sqrt{x}+9\right)}{\sqrt{x}+3}\)

=căn x-2(căn x+3)

=-căn x-6

b: B+8>0

=>-căn x-6+8>0

=>-căn x+2>0

=>-căn x>-2

=>căn x<2

=>0<=x<4

Night Queen
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 20:39

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-9}\right)\cdot\dfrac{2\sqrt{x}+6}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-3+2\sqrt{x}}{x-9}\cdot\dfrac{2\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\cdot\dfrac{2}{\sqrt{x}-3}=\dfrac{6}{\sqrt{x}-3}\)

Usagi Tsukino
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 12:02

a: \(A=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=5-1=4\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)

\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=-\dfrac{2}{\sqrt{x}+1}\)

c: Khi x=9 thì \(B=\dfrac{-2}{\sqrt{9}+1}=\dfrac{-2}{3+1}=-\dfrac{2}{4}=-\dfrac{1}{2}\)

d: |B|=A

=>\(\left|-\dfrac{2}{\sqrt{x}+1}\right|=4\)

=>\(\dfrac{2}{\sqrt{x}+1}=4\) hoặc \(\dfrac{2}{\sqrt{x}+1}=-4\)

=>\(\sqrt{x}+1=\dfrac{1}{2}\) hoặc \(\sqrt{x}+1=-\dfrac{1}{2}\)

=>\(\sqrt{x}=-\dfrac{1}{2}\)(loại) hoặc \(\sqrt{x}=-\dfrac{3}{2}\)(loại)

Thu Huong
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 22:02

\(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{3\sqrt{x}-9+x+9}{x-9}:\dfrac{2\sqrt{x}-5-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-2}\)

\(=\dfrac{x\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{x}{\sqrt{x}-2}\)

kietdeptrai
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2023 lúc 14:19

a: Khi x=16 thì \(A=\dfrac{6}{16-3\cdot4}=\dfrac{6}{4}=\dfrac{3}{2}\)

b: P=A:B

\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{6}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

c: \(P-1=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}}=\dfrac{3}{\sqrt{x}}>0\)

=>P>1

 

Usagi Tsukino
Xem chi tiết

a: \(A=\dfrac{x\sqrt{x}+1}{x+2\sqrt{x}+1}\)

ĐKXĐ: x>=0

\(A=\dfrac{x\sqrt{x}+1}{x+2\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\)

Thay x=4 vào A, ta được:

\(A=\dfrac{4-2+1}{2+1}=\dfrac{5-2}{3}=1\)

b: M=A*B

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\left(\dfrac{2x+6\sqrt{x}+7}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\left(\dfrac{2x+6\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{2x+6\sqrt{x}+7-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)^2}=\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\)

Để M>2 thì M-2>0

=>\(\dfrac{\sqrt{x}+6-2\sqrt{x}-2}{\sqrt{x}+1}>0\)

=>\(-\sqrt{x}+4>0\)

=>\(-\sqrt{x}>-4\)

=>\(\sqrt{x}< 4\)

=>0<=x<16

c: Để M là số nguyên thì \(\sqrt{x}+6⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1+5⋮\sqrt{x}+1\)

=>\(5⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1\in\left\{1;-1;5;-5\right\}\)

=>\(\sqrt{x}\in\left\{0;-2;4;-6\right\}\)

=>\(\sqrt{x}\in\left\{0;4\right\}\)

=>\(x\in\left\{0;16\right\}\)

Usagi Tsukino
Xem chi tiết

1: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right)\cdot\left(\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\right)\)

\(=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

2: Thay x=9 vào A, ta được:

\(A=\dfrac{3}{3+1}=\dfrac{3}{4}\)

Thuy Chu
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 19:23

1: =>x^2-x=3-x

=>x^2=3

=>x=căn 3 hoặc x=-căn 3

2: =>x^2-4x+3=x^2-4x+4 và x>=2

=>3=4(vô lý)

3: =>2|x-1|=6

=>|x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2 hoặc x=4

4: =>|2x-3|=|x-2|

=>2x-3=x-2 hoặc 2x-3=-x+2

=>x=1 hoặc x=5/3

5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)

=>x+2=0

=>x=-2