a: \(A=\dfrac{x\sqrt{x}+1}{x+2\sqrt{x}+1}\)
ĐKXĐ: x>=0
\(A=\dfrac{x\sqrt{x}+1}{x+2\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\)
Thay x=4 vào A, ta được:
\(A=\dfrac{4-2+1}{2+1}=\dfrac{5-2}{3}=1\)
b: M=A*B
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\left(\dfrac{2x+6\sqrt{x}+7}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\left(\dfrac{2x+6\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{2x+6\sqrt{x}+7-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)^2}=\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\)
Để M>2 thì M-2>0
=>\(\dfrac{\sqrt{x}+6-2\sqrt{x}-2}{\sqrt{x}+1}>0\)
=>\(-\sqrt{x}+4>0\)
=>\(-\sqrt{x}>-4\)
=>\(\sqrt{x}< 4\)
=>0<=x<16
c: Để M là số nguyên thì \(\sqrt{x}+6⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1+5⋮\sqrt{x}+1\)
=>\(5⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;-1;5;-5\right\}\)
=>\(\sqrt{x}\in\left\{0;-2;4;-6\right\}\)
=>\(\sqrt{x}\in\left\{0;4\right\}\)
=>\(x\in\left\{0;16\right\}\)