Cho phương trình 10x =m+1 (*) giải phương trình (*) khi m=1;m=-1 m=2;m=-2
Cho phương trình \(x^4-10x^2+3m+6=0\) (1) với m là tham số
1) Giải phương trình (1) khi \(m=1\)
2) Tìm m để phương trình (1) có bốn nghiệm phân biết cách đều
cho phương trình sau: x² - 2(m+1) -m - 1=0 a, Giải phương trình trên khi m=2 b, không giải phương trình tính giá trị biểu thức c,tìm giá trị nhỏ nhất của phương trình tại m=4
a: Khi m=2 thì pt sẽ là x^2-6x-3=0
=>\(x=3\pm2\sqrt{3}\)
Cho phương trình: \(x^2+2x+\left|x+1\right|-m=0\)
giải phương trình khi m=1. Tìm m để phương trình vô nghiệm
Lời giải:
PT $\Leftrightarrow (x+1)^2+|x+1|-(m+1)=0$
$\Leftrightarrow |x+1|^2+|x+1|-(m+1)=0$
Đặt $|x+1|=t(t\geq 0)$ thì: $t^2+t-(m+1)=0(*)$
Với $m=1$ thì $t^2+t-2=0$
$\Leftrightarrow (t-1)(t+2)=0$
Vì $t\geq 0$ nên $t=1\Leftrightarrow |x+1|=1$
$\Leftrightarrow x+1=\pm 1\Leftrightarrow x=0$ hoặc $x=-2$
Để pt vô nghiệm thì $(*)$ chỉ có nghiệm âm hoặc vô nghiệm.
PT $(*)$ chỉ có nghiệm âm khi \(\left\{\begin{matrix} \Delta (*)=1+4(m+1)\geq 0\\ S=-1< 0\\ P=-(m+1)<0\end{matrix}\right.\Leftrightarrow m>-1\)
Để $(*)$ vô nghiệm khi $\Delta=4m+5< 0$
$\Leftrightarrow m< \frac{-5}{4}$
Vậy $m>-1$ hoặc $m< \frac{-5}{4}$
Bài tập 1 Cho hệ phương trình (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x = và y = .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Bài 1: Cho phương ẩn x: (1-2m) x – m-4=0 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất.
b) Tìm giá trị của m để phương trình có nghiệm x=2
c) Giải phương trình khi m= 5
\(a,PT\Leftrightarrow\left(1-2m\right)x=m+4\)
Bậc nhất \(\Leftrightarrow1-2m\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
\(b,x=2\Leftrightarrow2-4m-m-4=0\Leftrightarrow m=-\dfrac{2}{5}\\ c,m=5\Leftrightarrow-9x-9=0\Leftrightarrow x=-1\)
Cho phương trình x2 - 2mx +m2 - m - 3 - 0 (1) /a) giải phương trình (1)khi m = 1 ; b) tìm giá trị của m để phương trình có nghiệm kép
a.\(m=1\)
\(\Leftrightarrow x^2-2.1x+1^2-1-3=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) ( Vi-ét )
b.\(\Delta=\left(-2m\right)^2-4\left(m^2-m-3\right)\)
\(=4m^2-4m^2+4m+12\)
\(=4m+12\)
Để pt có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow4m+12=0\)
\(\Leftrightarrow m=-3\)
Cho phương trình 3 x 2 + 2 ( 3 m - 1 ) x + 3 m 2 - m + 1 = 0 . Giải phương trình khi m = -1.
Khi m = -1 phương trình đã cho trở thành 3 x 2 - 8 x + 5 = 0 có hai nghiệm x 1 = 1 , x 2 = 5 / 3
GIÚP MÌNH VỚI :))
1) Cho phương trình: 2x2 - ( 2m + 1 ) x + m2 - 9m + 39 = 0
a. Giải phương trình khi m=9
b. Tìm m để phương trình có 2 nghiệm phân biệt
2) Cho phương trình: x2 - 2 (m - 1) x -3 - m =0
a. Giải phương trình khi m=-1
b) Tìm m để phương trình có 2 nghiệm phân biệt
1) Cho phương trình x 4 + m x 2 - m - 1 = 0(m là tham số)
a) Giải phương trình khi m = 2
1) x 4 + m x 2 - m - 1 = 0
a) Khi m = 2, phương trình trở thành: x 4 + 2 x 2 – 3 = 0
Đặt x 2 = t (t ≥ 0). Khi đó ta có phương trình: t 2 + 2t - 3 = 0
⇒ Phương trình có nghiệm t = 1 và t = -3 (do phương trình có dạng a + b + c = 0)
Do t ≥ 0 nên t = 1 ⇒ x 2 = 1 ⇒ x = ±1