cho tam giác abc vuông tại a có bd là phân giác của góc abc ( dthuộc ac ) trên cạnh bc lấy điểm e sao cho be=ba cm tam giác abd = tam giác ebd b> họi o là giao điểm của ae và bd cm oa=oe
Cho tam giác ABC vuông tại A, vẽ BD là tia phân giác của ABC (D thuộc AC. Trên cạnh BC lấy điểm E sao cho BE=BA. Gọi I là giao điểm của BD và AE. a) Chứng minh: tam giác ABD= tam giác EBD. b) Chứng minh: DE=AD và DE vuông góc BC.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
a: Xét ΔABD và ΔEBD có
BA=BE
ˆABD=ˆEBDABD^=EBD^
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
Ta có: ΔABD=ΔEBD
Cho tam giác ABC có góc A =90 độ , BD là tia phân giác của góc B( D thuộc AC ) . Trên cạnh BC lấy điểm E sao cho BA=BE .
a) cm : tam giác ABD = tam giác EBD
b) trên tia đối của DE lấy F sao cho DC=DF . Cm AF=CE
c) Tia BD cắt FC tại H .Cm FC//AE
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân c) Cho BD cắt FC tại N, trên tia đối NB lấy M sao cho NM=ND. CM: FM // CD. d) Tính chu vi tam giác ABC , biết AB/AC= 3/4 ; BC=15 cm CẦN GẤP :)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
a) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay ED\(\perp\)BC(Đpcm)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)+A(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AF=EC(hai cạnh tương ứng)
Ta có: BA+AF=BF(A nằm giữa B và F)
BE+EC=BC(E nằm giữa B và C)
mà BA=BE(gt)
và AF=EC(cmt)
nên BF=BC
Xét ΔBFC có BF=BC(cmt)
nên ΔBFC cân tại B(Định nghĩa tam giác cân)
Cho tam giác ABC vuông tại acos phân giác BD ( D thuộc AC) . Trên cạnh BC lấy điểm E sao cho AB= BE .Trên tia đối của tia AB lấy điểm f sao cho Af= EG gọi I là giao điểm của BD với Fc .CM
a, tam giác ABD = tam gác EBD và DE vuông góc BC
B, BD là đường trung trực của đoạn thẳng AE
c, BA điểm D,E,F thẳng hàng
d, Điểm d cách đều ba cạnh của tam giác AEI
cho tam giác ABC vuông tại A có AB=3CM , AC= 4 CM , BC=5cm
a) so sánh các góc của tam giác ABC
b) vẽ tia phân giác BD của tam giác ABC ( D thuộc AC ) trên cạnh BC lấy điểm E sao cho AB=BE. CM tâm giác ABD= tam giác EBD
c) CM: DB là phân giác của góc ADE
d) CM: DE vuông góc BC
a: AB<AC<BC
=>góc C<gócB<góc A
b: Xét ΔABD và ΔEBD có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
c,d: ΔBAD=ΔBED
=>góc ADB=góc EDB và góc BAD=góc BED=90 độ
=>DB là phân giác của góc ADE và DE vuông góc BC
tam giác ABC vuông tại A (AB<AC).trên cạnh AC lấy điểm E sao cho BE=BA.Kẻ BD là tia phân của góc ABC (D thuộc AC). a) tam giác ABE là tam giác gì? CM tam giác ABD=tam giác EBD b) chứng minh CM:DE vuông góc với BC
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân
Nhờ mọi người vẽ hình giúp em vs ạ! Ko cần giải đâu
Cho tam giác ABC có góc A= 900 Trên cạnh BC lấy E sao cho AB = BE tia phân giác của góc B cắt AC tại E
a) CM tam giác ABD và tam giác EBD
b) BD là trung điểm của AE Kẻ AH Vuông góc với BC cm AH Vuông góc DE
Bài 1:cho tam giác ABC có AB<AC , AD là tia phân giác. trên AC lấy điểm E sao cho AE=AB.
cm a, tam giác ABD=tam giác AED.
b,trên tia AB lấy điểm F sao cho AF=AC.cm góc FBD= góc CED.
c, AD vuông góc với CF
d, DF=DC
e,BE song song với CF
f,3 điểm F,D,E thẳng hàng
Bài 2: cho tam giác ABC có góc A = 90 độ BD là phân giác của góc B( D thuộc AC. vẽ DE vuông góc với BC. gọi E là giao điểm của AB và AE.
a, cm tam giác ABD= tam giác EBD.
b, cm BD vuông góc với AE tại trung điểm AE
c, cm tam giác DCF cân
d, khi tam giác ABC có góc B=60 độ, BC=12 cm . tính DC
giúp mk nha cảm ơn các bn