Bài 9: Tính chất ba đường cao của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thanh Trúc

Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân c) Cho BD cắt FC tại N, trên tia đối NB lấy M sao cho NM=ND. CM: FM // CD. d) Tính chu vi tam giác ABC , biết AB/AC= 3/4 ; BC=15 cm CẦN GẤP :)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:42

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:43

a) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay ED\(\perp\)BC(Đpcm)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:44

b) Ta có: ΔABD=ΔEBD(cmt)

nên DA=DE(Hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)+A(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AF=EC(hai cạnh tương ứng)

Ta có: BA+AF=BF(A nằm giữa B và F)

BE+EC=BC(E nằm giữa B và C)

mà BA=BE(gt)

và AF=EC(cmt)

nên BF=BC

Xét ΔBFC có BF=BC(cmt)

nên ΔBFC cân tại B(Định nghĩa tam giác cân)


Các câu hỏi tương tự
Vương Hân Nghiên
Xem chi tiết
tham nguyen
Xem chi tiết
Nguyễn Thảo Trâm
Xem chi tiết
Lê Nhật Linh
Xem chi tiết
Bích Diệp
Xem chi tiết
Phong
Xem chi tiết
Nhã Pham
Xem chi tiết
Hoàng Dương Lê Đức
Xem chi tiết
Tt_Cindy_tT
Xem chi tiết