x³ -6x -x +30
x³ -6x² -x +30
x³ - 6x² - x + 30
= x³ + 2x² - 8x² - 16x + 15x + 30
= (x³ + 2x²) - (8x² + 16x) + (15x + 30)
= x²(x + 2) - 8x(x + 2) + 15(x + 2)
= (x + 2)(x² - 8x + 15)
= (x + 2)(x² - 3x - 5x + 15)
= (x + 2)[(x² - 3x) - (5x - 15)]
= (x + 2)[x(x - 3) - 5(x - 3)]
= (x + 2)(x - 3)(x - 5)
\(x^3-6x^2-x+30\)
\(\Leftrightarrow\left(x+2\right)\left(x-5\right)\left(x-3\right)\)
Bấm máy tính nha :3
Mode setup + 5:EQN + 4:\(aX^3+bX^2+cX+d=0\)
nhập các số tương ứng vào nhe :3
x³ - 9x² + 6x + 16
x³ - x² - x - 2
x³ + x² - x + 2
x³ - 6x² - x + 30
x² - 7x - 6
27x³ - 27x² + 18x - 4
2x³ - x² + 5x + 3
(x² - 3)² + 16
a: \(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)
\(=\left(x-8\right)\left(x^2-x-2\right)\)
\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)
b: \(x^3-x^2-x-2\)
\(=x^3-2x^2+x^2-2x+x-2\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\)
\(=\left(x-2\right)\cdot\left(x^2+x+1\right)\)
c: \(x^3+x^2-x+2\)
\(=x^3+2x^2-x^2-2x+x+2\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+1\right)\)
d: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
e: Sửa đề: \(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
f: \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
g: \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
h: \(\left(x^2-3\right)^2+16\)
\(=x^4-6x^2+9+16\)
\(=x^4-6x^2+25\)
\(=x^4+10x^2+25-16x^2\)
\(=\left(x^2+5\right)^2-\left(4x\right)^2\)
\(=\left(x^2+5+4x\right)\left(x^2+5-4x\right)\)
tìm x biết x^3-6x^2-x+30=0
x3- 6x3 -x + 30 = 0
x3 + 2x2- 8x2- 16x + 15x + 30 = 0
x2 ( x + 2 ) - 8x ( x + 2 ) + 15 ( x + 2 ) = 0
( x + 2 )( x2 - 8x + 15 ) = 0
x + 2 = 0 hoặc x2 - 8x + 15 = 0
x = - 2 hoặc ( x - 4 )2 - 1 = 0
x = - 2 hoặc ( x - 4 - 1 ) ( x - 4 + 1 ) = 0
x = - 2 hoặcx = 5 hoặc x = 3
\(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}=6x^2\)
ĐKXĐ \(\hept{\begin{cases}30\ge\frac{5}{x^2}\\6x^2\ge\frac{5}{x^2}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2\ge\frac{1}{6}\\x^4\ge\frac{5}{6}\end{cases}}}\)
Đặt \(\hept{\begin{cases}6x^2=a\\\frac{5}{x^2}=b\end{cases}}\)\(\left(a\ge b>0\right)\)
\(\Rightarrow ab=30\)
Khi đó pt đã cho trở thành
\(\sqrt{ab-b}+\sqrt{a-b}=a\)
\(\Leftrightarrow\sqrt{ab-b}=a-\sqrt{a-b}\)
\(\Rightarrow ab-b=a^2-2a\sqrt{a-b}+a-b\)
\(\Leftrightarrow ab=a^2-2a\sqrt{a-b}+a\)(*)
Vì \(a\ne0\)nên chia cả 2 vế của (*) cho a ta đc
\(b=a-2\sqrt{a-b}+1\)
\(\Leftrightarrow a-b-2\sqrt{a-b}+1=0\)
\(\Leftrightarrow\left(\sqrt{a-b}-1\right)^2=0\)
\(\Leftrightarrow a-b=1\)
\(\Leftrightarrow6x^2-\frac{5}{x^2}=1\)
\(\Leftrightarrow\frac{6x^4-5}{x^2}=1\)
\(\Leftrightarrow6x^4-x^2-5=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(6x^2+5\right)=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x=\pm1\)
Thử lại thấy \(x=\pm1\)thỏa mãn bài toán
Vậy ...........
\(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}=6x^2\)
\(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}=6x^2\)ĐKXĐ:\(\left\{{}\begin{matrix}30-\frac{5}{x^2}\ge0\\6x^2-\frac{5}{x^2}\ge0\\x\ne0\end{matrix}\right.\)(*)
PT\(\Leftrightarrow\sqrt{30-\frac{5}{x^2}}-5+\sqrt{6x^2-\frac{5}{x^2}}-1=6x^2-6\)
\(\Leftrightarrow\frac{5-\frac{5}{x^2}}{\sqrt{30-\frac{5}{x^2}}+5}+\frac{6x^2-6-\frac{5}{x^2}+5}{\sqrt{6x^2-\frac{5}{x^2}}+1}=6\left(x^2-1\right)\)
\(\Leftrightarrow\frac{5\left(x^2-1\right)}{x^2\sqrt{.....}}+\frac{\left(x^2-1\right)\left(6+\frac{5}{x^2}\right)}{\sqrt{....}}-6\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{5}{x^2\sqrt{...}}+\frac{6+\frac{5}{x^2}}{\sqrt{...}}-6\right)=0\)
gấp gáp quá thì xài tạm cách này đi vế sau thử chứng minh vô nghiệm nhé
\(\Leftrightarrow\sqrt{30-\frac{30}{6x^2}}+\sqrt{6x^2-\frac{30}{6x^2}}=6x^2\)
Đặt \(6x^2=a>0\)
\(\sqrt{30-\frac{30}{a}}+\sqrt{a-\frac{30}{a}}=a\)
\(\sqrt{a-\frac{30}{a}}=t\Rightarrow\left\{{}\begin{matrix}\frac{30}{a}=a-t^2\\30=a^2-at^2\end{matrix}\right.\)
\(\sqrt{a^2-at^2-a+t^2}+t=a\)
\(\Leftrightarrow\sqrt{a^2-at^2-a+t^2}=a-t\) (\(a\ge t\))
\(\Rightarrow a^2-at^2-a+t^2=a^2-2at+t^2\)
\(\Leftrightarrow at^2-2at-a=0\)
\(\Leftrightarrow a\left(t-1\right)^2=0\Rightarrow t=1\)
\(\Rightarrow a^2-a-30=0\)
\(\Rightarrow\left[{}\begin{matrix}a=6\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow6x^2=6\Rightarrow x=\pm1\)
Phạm Minh Quang
Trần Thanh Phương
Akai Haruma
Nguyễn Việt Lâm
phân tích thành nhân tử
\(x^3-6x^2-x+30\)
\(x^3-6x^2-x+30\\=x^3+2x^2-8x^2-16x+15x+30\\=x^2(x+2)-8x(x+2)+15(x+2)\\=(x+2)(x^2-8x+15)\\=(x+2)(x^2-3x-5x+15)\\=(x+2)[x(x-3)-5(x-3)]\\=(x+2)(x-3)(x-5)\\Toru\)
\(x^3-6x^2-x+30\)
\(=x^3-3x^2-3x^2+9x-10x+30\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)-10\left(x-3\right)\)
\(=\left(x^2-3x-10\right)\left(x-3\right)\)
\(=\left(x^2-5x+2x-10\right)\left(x-3\right)\)
\(=\left(x\left(x-5\right)+2\left(x-5\right)\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)
x3-6x-x+30=0
Cho mình hỏi nếu là `-6x-x` thì ghi `-7x` có phải nhàn hơn không?Nhất thiết phải là `-6x^2`
`x^3-6x^2-x+30=0`
`<=>x^3+2x^2-8x^2-16x+15x+30=0`
`<=>x^2(x+2)-8x(x+2)+15(x+2)=0`
`<=>(x+2)(x^2-8x+15)=0`
`<=>(x+2)(x^2-3x-5x+15)=0`
`<=>(x+2)[x(x-3)-5(x-3)]=0`
`<=>(x+2)(x-3)(x-5)=0`
`<=>` \(\left[ \begin{array}{l}x+2=0\\x-3=0\\x-5=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-2\\x=3\\x=5\end{array} \right.\)
Vậy `S={-2,3,5}`
giải pt : \(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}=6x^2\)
ĐKXĐ \(x^2\ge\sqrt{\frac{5}{6}}\)
Nhân liên hợp ta được
\(6x^2-30=6x^2\left(\sqrt{6x^2-\frac{5}{x^2}}-\sqrt{30-\frac{5}{x^2}}\right)\)
=> \(\sqrt{6x^2-\frac{5}{x^2}}-\sqrt{30-\frac{5}{x^2}}=1-\frac{5}{x^2}\)
Cộng 2 vế của Pt trên và đề bài ta có
\(2\sqrt{6x^2-\frac{5}{x^2}}=6x^2-\frac{5}{x^2}+1\)
=> \((\sqrt{6x^2-\frac{5}{x^2}}-1)^2=0\)
=> \(6x^2-\frac{5}{x^2}=1\)
=> \(6x^4-x^2-5=0\)
<=> \(\orbr{\begin{cases}x^2=1\left(tmĐKXĐ\right)\\x^2=-\frac{5}{6}\left(loai\right)\end{cases}}\)
=> \(x=\pm1\)
Vậy \(x=\pm1\)
Bạn ơi mình k hiểu bước sau dòng Nhân liên hợp
Bạn GT kĩ hơn đc k ??
Mình nhân cả 2 vế để liên hợp
\(\left(a-b\right)\left(a+b\right)=a^2-b^2\)
Đoạn đó mình làm hơi tắt
tìm x sao cho x^3+x^2-x+2=0; x^3-6x^2-x+30=0