Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Scarlett Ohara
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 20:26

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=CA+DB

Thành Nhân Võ
Xem chi tiết
Trần Mai Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2021 lúc 0:21

b: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NC là tiếp tuyến

NB là tiếp tuyến

Do đó: NC=NB

Ta có: MN=MC+NC

nên MN=MA+NB

Nguyễn Đình Long’s
Xem chi tiết
An Thy
4 tháng 7 2021 lúc 9:22

1) Vì EM,EA là tiếp tuyến \(\Rightarrow OE\) là phân giác \(\angle MOA\)

\(\Rightarrow\angle MOE=\dfrac{1}{2}\angle MOA\)

Vì FM,FB là tiếp tuyến \(\Rightarrow OF\) là phân giác \(\angle MOB\)

\(\Rightarrow\angle MOF=\dfrac{1}{2}\angle MOB\)

\(\Rightarrow\angle MOE+\angle MOF=\dfrac{1}{2}\left(\angle MOA+\angle MOB\right)=\dfrac{1}{2}.180=90\)

\(\Rightarrow\angle EOF=90\)

2) Ta có: \(\angle EAO+\angle EMO=90+90=180\Rightarrow AEMO\) nội tiếp

\(\Rightarrow\angle MEO=\angle MAO\)

Vì AB là đường kính \(\Rightarrow\angle AMB=90\)

Xét \(\Delta MAB\) và \(\Delta OEF:\) Ta có: \(\left\{{}\begin{matrix}\angle AMB=\angle EOF\\\angle FEO=\angle MAB\end{matrix}\right.\)

\(\Rightarrow\Delta MAB\sim\Delta OEF\left(g-g\right)\)

Vì \(AE\parallel BF(\bot AB)\) \(\Rightarrow\dfrac{BF}{AE}=\dfrac{FK}{AK}\left(1\right)\)

Vì EM,EA là tiếp tuyến \(\Rightarrow EA=EM\left(2\right)\)

Vì FM,FB là tiếp tuyến \(\Rightarrow FB=FM\left(3\right)\)

Thế (2),(3) vào (1) \(\Rightarrow\dfrac{FM}{EM}=\dfrac{FK}{AK}\Rightarrow\) \(MK\parallel AE\) \(\Rightarrow MK\bot AB\)

undefined

Nott mee
Xem chi tiết
Lợi Phan
Xem chi tiết
Yến Nhi
Xem chi tiết
Yến Nhi
Xem chi tiết
Gãy Fan
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2023 lúc 19:48

a: Xét (O) có

MI,MA là tiếp tuyến

nên MI=MA và OM là phân giác của góc AOI(1)

Xét (O) có

NI,NB là tiếp tuyến

nên NI=NB và ON là phân giác của góc IOB(2)

Từ (1), (2) suy ra góc MON=1/2*180=90 độ

b: MN=MI+IN

=>MN=MA+NB

c: Gọi H là trung điểm của MN

Xét hình thang AMNB có

O,H lần lượt là trung điểm của AB,MN

nên HO là đường trung bình

=>HO//AM//BN

=>HO vuông góc AB

=>AB là tiếp tuyến của(H)

caclodaisu
Xem chi tiết
Nguyễn Cẩm Uyên
17 tháng 9 2021 lúc 17:31

bạn tự vẽ hình giúp mik nha

a) áp dụng t/c 2 tiếp tuyến cắt nhau ta có

OM là tia phân giác \(\widehat{AOI}\)

ON là tpg \(\widehat{IOB}\)

mà:\(\widehat{AOI}+\widehat{BOI}=180^o\)\(\Rightarrow OM\perp ON\)(t/c 2 góc kề bù)

vậy \(\widehat{MON}=90^o\)

b)từ t/c 2 tiếp tuyến cắt nhau ta có

MA=MI;BN=NI

\(\Rightarrow\)AM+BN=MI+NI=MN9(đpcm)

c)ta có:AM.BN=MI.NI(1)

xét \(\Delta MON\) vuông tại O có

MI.NI(đlý)=\(OI^2=R^2\)(2)

từ (1) và (2)\(\Rightarrow AM.BN=R^2\)