Những câu hỏi liên quan
Dũng Nguyễn
Xem chi tiết
Hoàng Nguyễn Văn
1 tháng 2 2021 lúc 0:10

Áp dụng bất đẳng thức Bunhia dạng phân thức cho 3 số ta có:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\begin{matrix}\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\\x,y,z>0;x+y+z=2\end{matrix}\)

\(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Bình luận (0)
✿✿❑ĐạT̐®ŋɢย❐✿✿
1 tháng 2 2021 lúc 7:06

Áp dụng BĐT Svac-xơ cho 3 số dương có :

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Vậy Min biểu thức cho là 1 khi \(x=y=z=\dfrac{2}{3}\)

Bình luận (0)
Lê Bảo Nghiêm
Xem chi tiết
Akai Haruma
19 tháng 1 2021 lúc 0:08

Lời giải:

Bạn cần bổ sung điều kiện $x,y,z>0$

\(P=\frac{1}{x.\frac{y^2+z^2}{y^2z^2}}+\frac{1}{y.\frac{z^2+x^2}{z^2x^2}}+\frac{1}{z.\frac{x^2+y^2}{x^2y^2}}=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{z^2}+\frac{1}{x^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)

\(=\frac{1}{x(3-\frac{1}{x^2})}+\frac{1}{y(3-\frac{1}{y^2})}+\frac{1}{z(3-\frac{1}{z^2})}=\frac{x}{3x^2-1}+\frac{y}{3y^2-1}+\frac{z}{3z^2-1}\)

Vì $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\Rightarrow x^2, y^2, z^2>\frac{1}{3}$

Xét hiệu:

\(\frac{x}{3x^2-1}-\frac{1}{2x^2}=\frac{(x-1)^2(2x+1)}{2x^2(3x^2-1)}\geq 0\) với mọi $x>0$ và $x^2>\frac{1}{3}$

$\Rightarrow \frac{x}{3x^2-1}\geq \frac{1}{2x^2}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:

$P\geq \frac{1}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3}{2}$

Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$

Bình luận (0)
Hồ Lê Thiên Đức
Xem chi tiết
Trần Tuấn Hoàng
24 tháng 5 2022 lúc 10:15

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

Bình luận (0)
dia fic
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 1 2021 lúc 23:38

\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)

\(\Rightarrow P\ge x+2y+3z-3\)

\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)

\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
Dương Thanh Ngân
Xem chi tiết
Akai Haruma
25 tháng 1 2021 lúc 10:48

Lời giải:Vì $x^2+y^2+z^2=2$ nên:

$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$

$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$

$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$

(theo BĐT AM-GM)

$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$

Vậy $P_{\max}=3$

Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$

 

Bình luận (0)
Ngọc Hồng
Xem chi tiết
 Mashiro Shiina
8 tháng 12 2018 lúc 13:26

1) Áp dụng bđt Cauchy-Schwarz:

\(A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^3+x^2y+xy^2+y^3+y^2z+yz^2+z^3+z^2x+x^2z}\)

\(=\dfrac{\left(x^2+y^2+z^2\right)^2}{x\left(x^2+y^2+z^2\right)+y\left(x^2+y^2+z^2\right)+z\left(x^2+y^2+z^2\right)}=\dfrac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge\dfrac{\dfrac{\left(x+y+z\right)^2}{3}}{x+y+z}=\dfrac{x+y+z}{3}=\dfrac{2012}{3}\)

\("="\Leftrightarrow x=y=z=\dfrac{2012}{3}\)

2)

Áp dụng bđt AM-GM:

\(\dfrac{x^3}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)

Chứng minh tương tự và cộng theo vế:

\(S\ge x-\dfrac{y}{2}+y-\dfrac{z}{2}+z-\dfrac{x}{2}=\dfrac{2015}{2}\)

\("="\Leftrightarrow x=y=z=\dfrac{2015}{3}\)

Bình luận (2)
 Mashiro Shiina
8 tháng 12 2018 lúc 22:43

Mk vừa nghĩ ra 1 cách xem thử nhé :v

AM-GM:

\(\left\{{}\begin{matrix}xy\le\dfrac{x^2+y^2}{2}\\yz\le\dfrac{y^2+z^2}{2}\\xz\le\dfrac{x^2+z^2}{2}\end{matrix}\right.\Leftrightarrow A\ge\dfrac{x^3}{x^2+\dfrac{x^2+y^2}{2}+y^2}+\dfrac{y^3}{y^2+\dfrac{y^2+z^2}{2}+z^2}+\dfrac{z^3}{z^2+\dfrac{x^2+z^2}{2}+x^2}\)

\(=\dfrac{x^3}{\dfrac{3}{2}\left(x^2+y^2\right)}+\dfrac{y^3}{\dfrac{3}{2}\left(y^2+z^2\right)}+\dfrac{z^3}{\dfrac{3}{2}\left(x^2+z^2\right)}\)

Rút mẫu ra rồi làm như bài 2 thôi :>

Bình luận (0)
Phạm Phương Linh
Xem chi tiết
Trên con đường thành côn...
4 tháng 8 2021 lúc 21:10

undefined

Bình luận (2)
Nguyễn Hoàng Dương
11 tháng 4 lúc 21:42

kẻ lười biếng nạp card, đi ô tô

Bình luận (0)
Nguyễn An
Xem chi tiết
Nguyễn An
11 tháng 10 2021 lúc 20:11

ai lm dc bài này ko ạ. mik đang cần lắmkhocroi

Bình luận (0)
Big City Boy
Xem chi tiết
Nguyễn Trọng Chiến
11 tháng 2 2021 lúc 18:22

Áp dụng bđt AM-GM ta có :

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\) (do x+y+z=2) 

Vậy ....

Bình luận (2)
Nguyễn Trọng Chiến
11 tháng 2 2021 lúc 18:33

Áp dụng bđt Cô-si vào các số x,y,z dương:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{y+z}\cdot\dfrac{y+z}{4}}=x\) 

Chứng minh tương tự :\(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\) , \(\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{1}{2}\left(x+y+z\right)\ge x+y+z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{1}{2}\left(x+y+z\right)=1\) 

Dấu bằng xảy ra của cả 2 cách là x=y=z=\(\dfrac{2}{3}\)

Bình luận (0)
Nguyễn Trọng Chiến
11 tháng 2 2021 lúc 18:34

Mik đã viết ra cả 2 cách nên bạn thấy cách nào dễ hiểu  thì làm cách đó

Bình luận (0)