Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Lê Thiên Đức

Cho các số thực dương x,y,z thỏa mãn xyz ≥ 1.Tìm GTNN của \(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

Trần Tuấn Hoàng
24 tháng 5 2022 lúc 10:15

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)


Các câu hỏi tương tự
Phạm Phương Linh
Xem chi tiết
Đặng Anh Tuấn
Xem chi tiết
Đỗ Thị Trà My
Xem chi tiết
Zata
Xem chi tiết
Nguyễn Trần Lam Trúc
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
Nguyễn Trâm Anh
Xem chi tiết
Nguyễn Hưng Phát
Xem chi tiết
nguyễn thanh huyền
Xem chi tiết