Chọn ngẫu nhiên một số trong sáu số 30; 31; 32; 33; 34; 35. Tìm xác suất để:
a) A: "Chọn được số nhỏ hơn 40"
b) B: "Chọn được số có 3 chữ số"
c) C: " Chọn được số là số nguyên tố"
d) D: " Chọn được số là số chẵn"
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số được tạo thành từ các chữ số 1, 2,3, 4 trong đó chữ số 1 có mặt đúng 3 lần, các chữ số còn lại có mặt đúng một lần. Chọn ngẫu nhiên một số từ tập S . Tính xác suất để số được chọn không có hai chữ số 1 nào đứng cạnh nhau
A.0,2.
B. 1 3
C. 1 6
D.0,3.
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số được tạo thành từ các chữ số 1, 2,3, 4 trong đó chữ số 1 có mặt đúng 3 lần, các chữ số còn lại có mặt đúng một lần. Chọn ngẫu nhiên một số từ tập S . Tính xác suất để số được chọn không có hai chữ số 1 nào đứng cạnh nhau.
A. 0,2
B. 1/3
C. 1/6
D. 0,3
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số phân biệt được chọn từ các chữ số 1, 2,3, 4, 5. 6, 7, 8, 9. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn sao cho tổng các chữ số hàng chục, hàng trăm, hàng ngàn băng 8.
Sáu số nguyên 1, 3, 5, 7, 9 và 11 tạo thành một chuỗi số học. Nếu ba trong số các số nguyên được chọn ngẫu nhiên mà không thay thế, xác suất là chúng tạo thành một dãy số học theo thứ tự chúng được chọn? Thể hiện câu trả lời của bạn dưới dạng một phân số chung.
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số phân biệt được chọn từ các chữ số 1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn sao cho mỗi số đó có tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số sau một đơn vị
Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)
Mặt khác \(a+b+c=d+e+f-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)
\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)
Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)
Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)
Gọi S là tập hợp tất cả các số tự nhiên gồm sáu chữ số phân biệt được chọn từ các số 1; 2; 3; 4; 5; 6. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có tổng của ba chữ số hàng đơn vị, hàng chục, hàng trăm lớn hơn tổng của các chữ số còn lại 3 đơn vị
n(S)=6!
Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12
=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)
=>Có 3*3!*3!
=>P=3/20
Một túi đựng các quả cầu có cùng kích thước, được ghi số 5; 10; 15; 20; 30; 35; 40. Lấy ngẫu nhiên một quả cầu trong túi. Chọn từ thích hợp ( chắc chắn, không thểm ngẫu nhiên) thay vào dấu “ ?” trong các câu sau:
- Biến cố A: “ Lấy được quả cầu ghi số là số chính phương” là biến cố ..?..
- Biến cố B: “ Lấy được quả cầu ghi số là số chia hết cho 3” là biến cố ..?..
- Biến cố C: “ Lấy được quả cầu ghi số là số chia hết cho 5” là biến cố ..?..
Biến cố A: “ Lấy được quả cầu ghi số là số chính phương” là biến cố không thể vì trong số các số được ghi không có số nào là số chính phương.
Biến cố B: “ Lấy được quả cầu ghi số là số chia hết cho 3” là biến cố ngẫu nhiên vì trong số các số được ghi, có số 15, 30 chia hết cho 3.
Biến cố C: “ Lấy được quả cầu ghi số là số chia hết cho 5” là biến cố chắc chắn vì tất cả các số được ghi đều chia hết cho 5.
Sáu số nguyên 1, 3, 5, 7, 9 và 11 tạo thành một chuỗi số học. Nếu ba trong số các số nguyên được chọn ngẫu nhiên mà không thay thế, xác suất là chúng tạo thành một dãy số học theo thứ tự chúng được chọn? Thể hiện câu trả lời của bạn dưới dạng một phân số chung.
lời giải chi tiết mk cần gấp