n(S)=6!
Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12
=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)
=>Có 3*3!*3!
=>P=3/20
n(S)=6!
Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12
=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)
=>Có 3*3!*3!
=>P=3/20
Gọi S là tập hợp tất cả các số tự nhiên có 3 chữ số đôi một khác nhau được lập từ các chữ số 0,1,2,3,4,5,6. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chia hết cho 6
Gọi S là tập hợp các số tự nhiên gồm 5 chữ số khác nhau. Từ tập hợp S chọn ngẫu nhiên 1 số. Tính xác suất để trong 5 chữ số của nó có đúng 2 chữ số lẻ
Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Gọi S là tích các chữ số của số được chọn. Xác suất đề S > 0 và chia hết cho 6 bằng?
Cho X là tập hợp các số tự nhiên có 6 chữ số khác nhau mà tổng các chữ số bằng 18. Chọn ngẫu nhiên một số từ tập hợp X, tính xác suất để số được chọn là số chẵn.
Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc S, xác suất để có hai chữ số tận cùng có cùng tính chẵn lẻ bằng?
Cho tập hợp A ={1;2;3;4;5}. Gọi B là tập số tự nhiên có 10 chữ số mà các chữ số lấy từ tập hợp A. Chọn ngẫu nhiên một số từ tập hợp B. Tính xác suất để số được chọn có một số lẻ chữ số 1 và một số chẵn chữ số 2.
Gọi A là tâp hợp các số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc vào tập A. Tính xác suất để chọn được số chia hết cho 9.
Từ tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên lấy ra được chỉ có mặt 3 chữ số khác nhau.