Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Hà Nguyễn
Xem chi tiết
nguyễn ngọc khánh chi
Xem chi tiết
Kiêm Hùng
12 tháng 5 2017 lúc 20:00

* Chứng tỏ

Ta có :\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

= \(\dfrac{1}{1.2.3}.\dfrac{2}{2}+\dfrac{1}{2.3.4}.\dfrac{2}{2}+...+\dfrac{1}{98.99.100}.\dfrac{2}{2}\)

= \(\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}+0+0+...+0+\dfrac{-1}{99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{-1}{9900}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{4850}{9900}+\dfrac{-1}{9900}\right)\)

= \(\dfrac{1}{2}.\dfrac{4849}{9900}\)

= \(\dfrac{4849}{19800}\)

Kiêm Hùng
12 tháng 5 2017 lúc 20:08

* So sánh

\(\dfrac{4950}{19800}\)\(\dfrac{1}{4}\)

\(\dfrac{1}{4}=\dfrac{4950}{19800}\)

\(\dfrac{4950}{19800}=\dfrac{4950}{19800}\)

=> Tổng trên bằng với\(\dfrac{1}{4}\)

Kiêm Hùng
12 tháng 5 2017 lúc 20:10

mình ko chắc là đúng

fmgdgmdmgmgg
Xem chi tiết
Nguyen My Van
17 tháng 5 2022 lúc 17:15

\(2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{98.99.100}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{50.99-1}{100.99}=\dfrac{4949}{9900}\)

2611
17 tháng 5 2022 lúc 17:15

`A=1/[1.2.3]+1/[2.3.4]+....+1/[98.99.100]`

`A=1/2.(2/[1.2.3]+2/[2.3.4]+....+2/[98.99.100])`

`A=1/2.(1/[1.2]-1/[2.3]+1/[2.3]-1/[3.4]+....+1/[98.99]-1/[99.100])`

`A=1/2.(1/[1.2]-1/[99.100])`

`A=1/2.(1/2-1/9900)`

`A=1/2.(4950/9900-1/9900)`

`A=1/2 . 4949/9900`

`A=4949/19800`

(:!Tổng Phước Ru!:)
17 tháng 5 2022 lúc 17:18

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(C=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(C=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(C=\dfrac{1}{2}.\dfrac{4949}{9900}=\dfrac{4949}{19800}\)

Lê Thái Khả Hân
Xem chi tiết
Nguyễn Thanh Hằng
17 tháng 4 2017 lúc 11:59

Ta có :

\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..............+\dfrac{1}{98.99.100}\)

\(S=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+................+\dfrac{2}{98.99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(S=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(S=\dfrac{1}{2}.\dfrac{4949}{9900}\)

\(S=\dfrac{4949}{19800}\)

~ Chúc bn học tốt ~

Nguyễn Minh khánh
Xem chi tiết
Bùi Khánh Linh
21 tháng 3 2017 lúc 19:09

E=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)

* Áp dụng công thức: \(\dfrac{k}{n.\left(n+k\right)}\)=\(\dfrac{1}{n}-\dfrac{1}{n+k}\)

ta có : \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-....+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

E=\(\dfrac{1}{1.2}-\dfrac{1}{99.100}\)

E= ........(tính ra)

MonKey D. Luffy
21 tháng 3 2017 lúc 20:36

E=4949/9900

Nam Nguyễn
16 tháng 5 2017 lúc 15:13

Giải:

\(E=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}.\)

Áp dung tính chất:

\(\dfrac{2m}{b\left(b+1\right)\left(b+2\right)}=\dfrac{1}{b\left(b+1\right)}-\dfrac{1}{\left(b+m\right)\left(b+2\right)}\), ta có:

\(2E=2\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\right).\)

\(2E=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}.\)

\(2E=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}.\)

\(2E=\dfrac{1}{1.2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{98.99}-\dfrac{1}{98.99}\right)-\dfrac{1}{99.100}.\)

\(2E=\dfrac{1}{1.2}+0+0+...+0-\dfrac{1}{99.100}.\)

\(2E=\dfrac{1}{1.2}-\dfrac{1}{99.100}.\)

\(2E=\dfrac{1}{2}-\dfrac{1}{9900}.\)

\(2E=\dfrac{4950}{9900}-\dfrac{1}{9900}.\)

\(2E=\dfrac{4949}{9900}.\)

\(\Rightarrow E=\dfrac{4949}{9900}:2.\)

\(\Rightarrow E=\dfrac{4949}{9900}.\dfrac{1}{2}=\dfrac{4949}{19800}.\)

Vậy \(E=\dfrac{4949}{19800}.\)

~ Học tốt!!! ~

Học đi
Xem chi tiết
Nguyễn Huy Tú
4 tháng 3 2017 lúc 12:14

a) Ta có: \(3xy+x-3y=6\)

\(\Rightarrow x\left(3y+1\right)-3y=6\)

\(\Rightarrow x\left(3y+1\right)-\left(3y+1\right)=5\)

\(\Rightarrow\left(x-1\right)\left(3y+1\right)=5\)

Ta có bảng sau:

....

b) Ta có: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

\(\Rightarrow\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}=\frac{4949}{19800}\left(đpcm\right)\)

Vậy...

Nguyễn Thị Minh Nguyệt
Xem chi tiết
Trèo lên cột điện thế hi...
22 tháng 3 2017 lúc 20:25

\(\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\) Gio thi tu ma lam ko thích viết nữa mệt

Tạ Lan Hương
9 tháng 5 2017 lúc 19:21

A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{18.19.20}\)

Theo công thức:

\(\dfrac{2m}{b.\left(b+m\right).\left(b+2m\right)}=\dfrac{1}{b.\left(b+m\right)}-\dfrac{1}{\left(b+m\right).\left(b+m.2\right)}\)Ta có:

2A=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{18.19.20}\)

2A=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)2A=\(\dfrac{1}{1.2}-\dfrac{1}{19.20}\)

2A=\(\dfrac{1}{2}-\dfrac{1}{19.20}\)

A=\(\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right):2\)

A=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\)

A=\(\dfrac{1}{2}.\dfrac{19.20-2}{2.19.20}\)

A=\(\dfrac{19.20-2}{2.2.19.20}\) < \(\dfrac{19.20}{2.2.19.20}\) = \(\dfrac{1}{4}\)

\(\Rightarrow\) A<\(\dfrac{1}{4}\)

Tạ Lan Hương
9 tháng 5 2017 lúc 19:26

mik xin loi phan Ta có

\(\dfrac{2m}{b.\left(b+m\right)\left(b+2m\right)}=\dfrac{1}{b.\left(b+m\right)}-\dfrac{1}{\left(b+m\right).\left(b+2m\right)}\)Ta có blablabla

phạm thị thu phương
Xem chi tiết
Nguyễn Quang Ngọc Trác
24 tháng 3 2017 lúc 5:16

a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760

Tạ Lan Hương
Xem chi tiết
Hoàng Phương Linh
9 tháng 5 2017 lúc 21:13

\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\)<\(\dfrac{1}{4}\)

Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\)

2.A=2.(\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\))

2. A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+\(\dfrac{2}{3.4.5}\)+...+\(\dfrac{2}{17.18.19}\)

2.A=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{2.3}\)+\(\dfrac{1}{2.3}\)-\(\dfrac{1}{3.4}\)+ ...+\(\dfrac{1}{17.18}\)-\(\dfrac{1}{18.19}\)

2.A=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{18.19}\)=\(\dfrac{85}{171}\)

A=\(\dfrac{85}{171}\):2=\(\dfrac{85}{342}\)

Ta cũng có: \(\dfrac{1}{4}\) = \(\dfrac{171}{684}\); \(\dfrac{85}{342}\) = \(\dfrac{170}{684}\)

Vì 170 < 171 ( \(\dfrac{170}{684}\) < \(\dfrac{171}{684}\) )

Vậy \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{17.18.19}\) < \(\dfrac{1}{4}\)