* Chứng tỏ
Ta có :\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)
= \(\dfrac{1}{1.2.3}.\dfrac{2}{2}+\dfrac{1}{2.3.4}.\dfrac{2}{2}+...+\dfrac{1}{98.99.100}.\dfrac{2}{2}\)
= \(\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}+0+0+...+0+\dfrac{-1}{99.100}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{-1}{9900}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{4850}{9900}+\dfrac{-1}{9900}\right)\)
= \(\dfrac{1}{2}.\dfrac{4849}{9900}\)
= \(\dfrac{4849}{19800}\)
* So sánh
\(\dfrac{4950}{19800}\) và \(\dfrac{1}{4}\)
\(\dfrac{1}{4}=\dfrac{4950}{19800}\)
Vì \(\dfrac{4950}{19800}=\dfrac{4950}{19800}\)
=> Tổng trên bằng với\(\dfrac{1}{4}\)
Giải:
(Đề sai rùi, phải là \(< \dfrac{1}{4}\) mới đúng, cho nên mik làm đề đúng).
Đặt tên cho dãy phân số trên là A, ta có:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}.\)
\(2A=2\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\right).\)
\(2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}.\)
\(2A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}.\)\(2A=\dfrac{1}{1.2}+\left(\dfrac{1}{2.3}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{3.4}-\dfrac{1}{3.4}\right)+\left(\dfrac{1}{4.5}-\dfrac{1}{4.5}\right)+...+\left(\dfrac{1}{98}-\dfrac{1}{98}\right)-\dfrac{1}{99.100}.\)\(2A=\dfrac{1}{1.2}+0+0+...+0-\dfrac{1}{99.100}.\)
\(2A=\dfrac{1}{1.2}-\dfrac{1}{99.100}.\)
\(2A=\dfrac{1}{2}-\dfrac{1}{9900}.\)
\(2A=\dfrac{4950}{9900}-\dfrac{1}{9900}.\)
\(2A=\dfrac{4949}{9900}.\)
\(\Rightarrow A=\dfrac{4949}{9900}:2.\)
\(\Rightarrow A=\dfrac{4949}{19800}.\)
- Quy đồng mẫu số của phân số \(\dfrac{1}{4}\) thành phân số có mẫu là 19800: \(\dfrac{1}{4}=\dfrac{1.4950}{4.4950}=\dfrac{4950}{19800}.\)
Vì: \(A=\dfrac{4949}{19800}< \dfrac{1}{4}=\dfrac{4950}{19800}.\)
\(\Rightarrow A< \dfrac{1}{4}.\)
Vậy ta thu được \(đpcm.\)
~ Học tốt!!! ~