\(\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\) Gio thi tu ma lam ko thích viết nữa mệt
A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{18.19.20}\)
Theo công thức:
\(\dfrac{2m}{b.\left(b+m\right).\left(b+2m\right)}=\dfrac{1}{b.\left(b+m\right)}-\dfrac{1}{\left(b+m\right).\left(b+m.2\right)}\)Ta có:
2A=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{18.19.20}\)
2A=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)2A=\(\dfrac{1}{1.2}-\dfrac{1}{19.20}\)
2A=\(\dfrac{1}{2}-\dfrac{1}{19.20}\)
A=\(\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right):2\)
A=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\)
A=\(\dfrac{1}{2}.\dfrac{19.20-2}{2.19.20}\)
A=\(\dfrac{19.20-2}{2.2.19.20}\) < \(\dfrac{19.20}{2.2.19.20}\) = \(\dfrac{1}{4}\)
\(\Rightarrow\) A<\(\dfrac{1}{4}\)
mik xin loi phan Ta có
\(\dfrac{2m}{b.\left(b+m\right)\left(b+2m\right)}=\dfrac{1}{b.\left(b+m\right)}-\dfrac{1}{\left(b+m\right).\left(b+2m\right)}\)Ta có blablabla