a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760
a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760
Chứng minh rằng:B=\(\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+...+\dfrac{36}{25.27.29}< 3\)
Ai làm đúng mình tick cho nha
bài 1 : so sánh :
a) \(\dfrac{23}{21}\)và\(\dfrac{21}{23}\)
b)\(\dfrac{19}{26}\)và \(\dfrac{21}{25}\)
bài 2 : sắp sếp các phân số sau từ bé đến lớn :
a)\(\dfrac{7}{36};\dfrac{24}{36};\dfrac{13}{36};\dfrac{1}{36};\dfrac{43}{36};\dfrac{36}{36}\)
b)\(\dfrac{-3}{10};\dfrac{-31}{100};\dfrac{-297}{1000};\dfrac{10000}{-3056}\)
c)\(\dfrac{13}{20};\dfrac{7}{20};\dfrac{9}{4};\dfrac{2}{5};\dfrac{1}{2}\)
d)\(\dfrac{13}{21};\dfrac{152}{17};\dfrac{13}{17};\dfrac{-5}{21}\)
e)\(\dfrac{-1}{2};\dfrac{3}{-4};\dfrac{-2}{3};\dfrac{4}{-5}\)
Chứng minh rằng: \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}< \dfrac{1}{2}\)
TÍnh A=\(\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)
B=\(\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+...+\dfrac{5}{98.99.100.101}\)
C=\(\dfrac{6}{1^2+2^2}+\dfrac{10}{2^2+3^2}+\dfrac{14}{3^2+4^2}+...+\dfrac{398}{99^2.100^2}\)
Chứng minh rằng : \(\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{114}+.....+\dfrac{2n+1}{n^2\left(n+1\right)^2}< 1\)
a)Tìm các số nguyên x,y sao cho \(3xy+x-3y=6\)
b) CMR : \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}=\dfrac{4949}{19800}\)
Bài 1:Tính
a, A=\(\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot....\cdot\dfrac{9999}{10000}\)
b,B=\(\left(1-\dfrac{1}{21}\right)\cdot\left(1-\dfrac{1}{28}\right)\cdot\left(1-\dfrac{1}{36}\right)\cdot....\cdot\left(1-\dfrac{1}{1326}\right)\)
c,C=\(\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot....\cdot\left(1+\dfrac{1}{99\cdot101}\right)\)
Tìm x, biết :
a) \(\left(\dfrac{31}{20}-\dfrac{26}{45}\right).\dfrac{-36}{35}< x< \left(\dfrac{51}{56}+\dfrac{8}{21}+\dfrac{1}{3}\right).\dfrac{8}{13}\)
b) \(\dfrac{-3}{5}.x=\dfrac{1}{4}+0,75\)
c) \(\left(\dfrac{1}{7}-\dfrac{1}{3}\right).x=\dfrac{28}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}\right)\)
d) \(\dfrac{5}{7}.x=\dfrac{9}{8}-0,125\)
e)\(\left(\dfrac{2}{11}+\dfrac{1}{3}\right).x=\left(\dfrac{1}{7}-\dfrac{1}{8}\right).56\)
Thực hiện phép tính sau bằng cách hợp lí nhất :
\(\dfrac{1}{3}+\dfrac{-3}{4}+\dfrac{3}{5}+\dfrac{1}{57}+\dfrac{-1}{36}+\dfrac{1}{15}+\dfrac{-2}{9}\)