So sánh : \(\left(\dfrac{1}{2}\right)^{12}\)và \(\left(\dfrac{1}{3}\right)^9\)
so sánh giá trị 2 biểu thức sau:
\(\left(4-\dfrac{12}{5}\right):\left(3-\dfrac{9}{5}\right)\)và \(4:\dfrac{12}{5}-3:\dfrac{9}{5}\)
Biểu thức thứ nhất
\(\dfrac{8}{5}:\dfrac{6}{5}=\dfrac{8}{6}=\dfrac{4}{3}\)
Biểu thức thứ hai:
\(\dfrac{5}{3}-\dfrac{5}{3}=0\)
Vậy biểu thức thứ nhất lớn hơn biểu thức thứ 2
A= \(\left(\dfrac{1}{2}-1\right)\)\(\left(\dfrac{1}{3}-1\right)\).........\(\left(\dfrac{1}{10}-1\right)\). So sánh A với \(\dfrac{-1}{9}\)
B= \(\left(\dfrac{1}{4}-1\right)\)\(\left(\dfrac{1}{9}-1\right)\)...........\(\left(\dfrac{1}{100}-1\right)\). So sánh B với \(\dfrac{-11}{21}\)
a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)
\(=-\dfrac{1}{10}\)
9<10
=>1/9>1/10
=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)
=>\(A>-\dfrac{1}{9}\)
b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)
\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)
20<21
=>\(\dfrac{11}{20}>\dfrac{11}{21}\)
=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)
=>\(B< -\dfrac{11}{21}\)
Cho A=\(\left(\dfrac{1}{2^2}-1\right)\)\(\left(\dfrac{1}{3^2}-1\right)\)\(\left(\dfrac{1}{4^2}-1\right)\)...\(\left(\dfrac{1}{2013^2}-1\right)\)\(\left(\dfrac{1}{2014^2}-1\right)\) và B= \(-\dfrac{1}{2}\)
Hãy so sánh A và B
\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)
\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)
\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)
\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)
Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B
cho A = \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}-1\right).....\left(\dfrac{1}{10}-1\right)\). so sánh a với \(-\dfrac{1}{9}\)
Ta có:
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{10}-1\right)\)
\(A=-\dfrac{1}{2}\cdot-\dfrac{2}{3}-\dfrac{3}{4}\cdot...\cdot-\dfrac{9}{10}\)
\(A=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-9}{2\cdot3\cdot4\cdot...\cdot10}\)
\(A=-\dfrac{1}{10}\)
Mà: \(10>9\)
\(\Rightarrow\dfrac{1}{10}< \dfrac{1}{9}\)
\(\Rightarrow-\dfrac{1}{10}>-\dfrac{1}{9}\)
\(\Rightarrow A>-\dfrac{1}{9}\)
Cho \(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right).\) So sánh B và\(\dfrac{1}{2}\)
HELP ME!
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)
\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)
\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)
\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\)
\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)
\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)
\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)
\(B=-1\) (2019 số -1)
Mà: \(-1< \dfrac{1}{2}\)
\(\Rightarrow B< \dfrac{1}{2}\)
\(\dfrac{1}{2^2}\); \(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1
Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:
(2020 - 2):1 + 1 = 2019 (số hạng)
Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)
\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)....\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)
So sánh B với \(\dfrac{11}{21}\)
\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{99}{100}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{9.11}{10.10}=\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{9}{10}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\right)=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{9}\right)\left(1+\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\\ B=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{8}{9}\cdot\dfrac{9}{10}\right)\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{10}{9}\cdot\dfrac{11}{10}\right)\\ B=\dfrac{1}{10}\cdot\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
Tính: \(B=\left(1-\dfrac{1}{2^2}\right).\left(1-\dfrac{1}{3^2}\right).\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\) rồi so sánh với \(\dfrac{1}{2}\)
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)
\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)
\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)
\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)
\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)
\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)
\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
\(\Rightarrow B< \dfrac{1}{2}\)
Cho biểu thức \(A=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)
Hãy so sánh A với \(\dfrac{11}{19}\)
`A = 3/4 xx 8/9 xx ... xx 99/100`
`= (1xx3)/(2xx2) xx (2xx4)/(3xx3) xx ... xx (9xx11)/(10xx10)`
`= (1xx2xx3xx ... xx 9)/(2xx3xx...xx10) xx (3xx4xx5xx...xx 11)/(2xx3xx4xx...xx 10)`
`= 1/10 xx 11`
`= 11/10`.
Ta có: `11/10 > 1`
`11/19 < 1`.
`=> A > 11/19`.
hãy so sánh mỗi số sau
a) \(\left(0,2\right)^{-3}\) và \(\left(0,2\right)^{-2}\)
b) \(\left(\dfrac{1}{3}\right)^{2000}\) và \(\left(\dfrac{1}{3}\right)^{2004}\)
c) \(\left(3,2\right)^{1,5}\) và \(\left(3,2\right)^{1,6}\)
d) \(\left(0,5\right)^{-2021}\) và \(\left(0,5\right)^{-2023}\)
a: Vì 0,2<1
nên hàm số \(y=\left(0,2\right)^x\) nghịch biến trên R
mà -3<-2
nên \(\left(0,2\right)^{-3}>\left(0,2\right)^{-2}\)
b: Vì \(0< \dfrac{1}{3}< 1\)
nên hàm số \(y=\left(\dfrac{1}{3}\right)^x\) nghịch biến trên R
mà \(2000< 2004\)
nên \(\left(\dfrac{1}{3}\right)^{2000}>\left(\dfrac{1}{3}\right)^{2004}\)
c: Vì 3,2>1
nên hàm số \(y=\left(3,2\right)^x\) đồng biến trên R
mà \(1,5< 1,6\)
nên \(\left(3,2\right)^{1,5}< \left(3,2\right)^{1,6}\)
d: Vì \(0< 0,5< 1\)
nên hàm số \(y=\left(0,5\right)^x\) nghịch biến trên R
mà -2021>-2023
nên \(\left(0,5\right)^{-2021}< \left(0,5\right)^{-2023}\)