Rút gọn biểu thức
B=1998*(199949+199948+199947+...+19992+2000)+1
rút gọn biểu thức
B=(x+1)^2-2(2x-1)(1+x)+4x^2-4x+1
`@` `\text {Ans}`
`\downarrow`
\(B=(x+1)^2-2(2x-1)(1+x)+4x^2-4x+1\)
`= x^2 + 2x + 1 - 2(2x^2 + x - 1) + 4x^2 - 4x + 1`
`= 5x^2 - 2x + 2 - 4x^2 - 2x + 2`
`= x^2 - 4x + 4`
\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)
\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(x+1-2x+1\right)^2\)
\(=\left(2-x\right)^2\)
rút gọn biểu thức
B= (x+1)^2 - 2(2x -1) (1+ x) + 4x^2 - 4x + 1
\(B=\left(x+1\right)^2-2\left(2x-1\right)\left(1+x\right)+4x^2-4x+1\)
\(=\left(x+1\right)^2-2\left(x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(x+1-2x+1\right)^2=\left(2-x\right)^2\)
Bài 1: Rút gọn biểu thức
B= (x+y)2-2(x2-y2)+(x-y)2
\(=\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2=\left(x+y-x+y\right)^2=4y^2\)
Rút gọn biểu thức
B = \(\dfrac{\cos\alpha}{\sqrt{2}}\).\(\sqrt{\dfrac{1}{1+\cos\alpha}+\dfrac{1}{1-\cos\alpha}}\)
\(=\dfrac{cosa}{\sqrt{2}}\cdot\sqrt{\dfrac{1-cosa+1+cosa}{1-cos^2a}}\)
\(=\dfrac{cosa}{\sqrt{2}}\cdot\dfrac{\sqrt{2}}{sina}=\dfrac{cosa}{sina}=cota\)
1. rút gọn biểu thức
B=\(\dfrac{3}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}-\dfrac{5\sqrt{6}}{2}\)
Sửa đề: \(B=\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}-\dfrac{5\sqrt{6}}{2}\)
Ta có: \(B=\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}-\dfrac{5\sqrt{6}}{2}\)
\(=\dfrac{2\left(\sqrt{6}+2\right)+2\left(\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{5\sqrt{6}}{2}\)
\(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}-\dfrac{5\sqrt{6}}{2}\)
\(=-\dfrac{\sqrt{6}}{2}\)
cho biểu thức :\(x\sqrt{2}-\sqrt{2x^2+1+x\sqrt{ }8}\)
A, Rút gọn biểu thức
B,với giá trị nào của x A=-3?
a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)
b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)
\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)
\(\Leftrightarrow2x\sqrt{2}=-4\)
hay \(x=-\sqrt{2}\)
Cho biểu thức Q = A2 - B2
a) Rút gọn biểu thức
b) Tìm điều kiện của biểu thức
c) Tính giá trị của biểu thức
\(a,Q=\left(A-B\right)\left(A+B\right)\\ b,ĐK:A,B\in R\)
Bài 1; Rút gọn biểu thức
b) 1/x-3-1/x+3+2x/9-x2 c) x+1/x-2+4-5x/x3+4x:x-2/x2+4
Cho biểu thức : \(H=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)với \(x\ge0\)
a) Rút gọn biểu thức
b) chứng minh H\(\le\)1
Cho biểu thức M= 2x/x+5+x+30-x^2/x^2-25+-1/x-5
a, rút gọn biểu thức
b, Tìm số nguyên x để M nhận giá trị nguyên
a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)
b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)