cho pt bậc hai:x2+2x+4m+1=0(1)
1.Giải pt (1) khi m=-1
2.tìm m để;
a) pt (1) có hai nghiệm phân biệt
b)pt (1) có hai nghiệm trái dấu
c)Tổng bình phương các nghiệm của pt (1)bằng 11
Cho pt bậc hai: \(2x^2-\left(m+1\right)x+m+1=0\) (1)
a, giải pt (1) khi m=-3
b, Tìm m để pt (1) có nghiệm.
a, Thay m=-3 vào pt ta có:
\(\left(1\right)\Leftrightarrow2x^2-\left(m+1\right)x+m+1=0\\ \Leftrightarrow2x^2-\left(-3+1\right)x+\left(-3\right)+1=0\\ \Leftrightarrow2x^2-\left(-2\right)x-2=0\\ \Leftrightarrow x^2+x-1=0\)
\(\Delta=1^2-4.1\left(-1\right)=1+4=5\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b, Ta có: \(\Delta=\left[-\left(m+1\right)\right]^2-4.2\left(m+1\right)\\ =\left(m+1\right)^2-8\left(m+1\right)\\ =m^2+2m+1-8m-8\\ =m^2-6m-7\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow m^2-6m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-1\\m\ge7\end{matrix}\right.\)
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
cho phương trình bậc hai:x2-6x+m=0(m là tham số)
tìm m để pt có 2 nghiệm thỏa mãn x13+x23=72
ta có Vi-ét:
x1 + x2 = 6
x1. x2 = m
lại có : x13 + x23 = 72
⇔(x1 + x2).(x12 - x1 . x2+ x22) = 72
⇔(x1 + x2).(x12 + 2.x1.x2 - 3. x1.x2+ x22) = 72
⇔(x1 + x2).[(x1 + x2)2 -3x1.x2]= 72____________(*)
thay từ ct vi-ét vào (*) ta có:
6.(62-3m)=72
⇔m=8
\(Δ=(-6)^2-4.1.m=36-4m\ge 0\\\leftrightarrow 4m\le 36\\\leftrightarrow m\le 9\)
Theo Viét
\(\begin{cases}x_1+x_2=6\\x_1x_2=m\end{cases}\)
\(x_1^3+x_2^3\\=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)\\=(x_1+x_2)[(x_1^2+2x_1x_2+x_2^2)-3x_1x_2]\\=(x_1+x_2)[(x_1+x_2)^2-3x_1x_2]\)
\(\to 6(6^2-3m)=72\\\leftrightarrow 36-3m=12\\\leftrightarrow 3m=24\\\leftrightarrow m=8(TM)\)
Vậy \(m=8\) thỏa mãn đề bài
cho pt bậc hai x2 + (2m+1)x + m2 = 0 (m là tham số )
a) giải pt khi m=1
b) tìm để pt có nghiệm kép. Tìm nghiệm kép đó
a: khi m=1 thì pt sẽ là:
x^2+3x+1=0
=>\(x=\dfrac{-3\pm\sqrt{5}}{2}\)
b: Δ=(2m+1)^2-4m^2
=4m+1
Để phương trình có nghiệm kép thì 4m+1=0
=>m=-1/4
Khi m=-1/4 thì pt sẽ là:
x^2+x*(-1/4*2+1)+(-1/4)^2=0
=>x^2+1/2x+1/16=0
=>(x+1/4)^2=0
=>x+1/4=0
=>x=-1/4
Bài 1: Cho pt ẩn x:
x2 - 2(m + 1)x + m2 + 7 = 0 (1)
a) Giải pt (1) khi m = -1; m = 3.
b) Tìm m để pt (1) có nghiệm là 4. Tìm nghiệm còn lại.
c) Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa:
* x12 + x22 = 0
* x1 - x2 = 0
Bài 2: Cho pt ẩn x:
x2 - 2x - m2 - 4 = 0 (1)
a) Giải pt (1) khi m = -2.
b) Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa mãn:
* x12 + x22 = 20
* x13 + x23 = 56
* x1 - x2 = 10
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
Cho pt bậc hai ẩn x: x2 - 2mx + 2m - 2 = 0 (1)
a) Giải pt (1) khi m = 0, m = 1.
b) Chứng minh pt (1) luôn có hai nghiệm phân biệt với mọi m ϵ R.
c) Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.
d) Biết x1, x2 là hai nghiệm của pt (1). Tìm m để x12 + x22 = 4.
e) Tìm m để I = x12 + x22 đạt giá trị nhỏ nhất.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
1. Giải phương trình: 2x4 - 3x2 - 5 = 0
2. Cho phương trình bậc 2 ẩn x: x2 - (m+5)x-m+6=0 (1) (m là tham số)
a. Giải pt (1) khi m = 1
b. Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa mãn: x12x2 + x1x22 = 18
#help me, hứa sẽ vote.
Bài 1:
$2x^4-3x^2-5=0$
$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$
$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$
$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x^2=\frac{5}{2}$
$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$
Bài 2:
a. Khi $m=1$ thì pt trở thành:
$x^2-6x+5=0$
$\Leftrightarrow (x^2-x)-(5x-5)=0$
$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$
$\Leftrightarrow x=1$ hoặc $x=5$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$
$\Leftrightarrow m^2+14m+1\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=m+5$
$x_1x_2=-m+6$
Khi đó:
$x_1^2x_2+x_1x_2^2=18$
$\Leftrightarrow x_1x_2(x_1+x_2)=18$
$\Leftrightarrow (m+5)(-m+6)=18$
$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$
$\Leftrightarrow (m+3)(m-4)=0$
$\Leftrightarrow m=-3$ hoặc $m=4$
Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.
Cho pt bậc x2 - (3m-1)x + 2m2 + m - 1=0 (m là tham số)
a) Giải pt khi m= -1
b) Giả sử x12 , x22 là hai nghiệm pb của chương trình. Tìm m để B= x12 - x22 - 3x1x2 đạt min
a: Khi m=-1 thì phương trình sẽ là:
x^2-(-3-1)x+2-1-1=0
=>x^2+4x=0
=>x=0 hoặc x=-4
Cho phương trình : ( 2 -4m ) x - 3m +5=0
Tìmm để pt là Pt bậc nhất 1 ẩn
Tìm m để pt có nghiệm là x=-2
chờ đi ăn xong gửi cho
a)Giá trị của phương trình được xác định khi 2-4m khác 0 và x-3m khác 0
=> -4m khác -2 và -3m khác -x
=>m khác -2:-4=1 phần 2 và m khác x phần 3
b)Vì m phải khác -2
Nên không có số nào thõa mãn cho phương trình trên đễ pt có nghiệm là -2
Nhớ k đúng