Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ulatroi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 4 2017 lúc 10:32

Chọn D.

Ta có 

Đặt 

Vũ Minh Phương
Xem chi tiết
HaNa
9 tháng 9 2023 lúc 5:37

\(sin4x=-cos2x\\ \Leftrightarrow sin4x+cos2x=0\\ \Leftrightarrow2sin2x.cos2x+cos2x=0\\ \Leftrightarrow cos2x\left(2sin2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}cos2x=0\\2sin2x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{\pi}{2}+k\pi\\sin2x=-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\sin2x=sin\left(-\dfrac{\pi}{6}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{12}+k\pi\\x=\dfrac{7\pi}{12}+k\pi\end{matrix}\right.\)

`HaNa♫D`

Hồng Phúc
6 tháng 10 2021 lúc 23:05

\(sin\dfrac{4x}{3}=-\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}arcsin\left(-\dfrac{1}{3}\right)+\dfrac{k3\pi}{2}\\x=\dfrac{3\pi}{4}-\dfrac{3}{4}arcsin\left(-\dfrac{1}{3}\right)+\dfrac{k\pi}{2}\end{matrix}\right.\)

Chi Linh
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2020 lúc 20:44

\(\Leftrightarrow2sinx+cos3x+sin2x-sin4x-1=0\)

\(\Leftrightarrow2sinx-1+cos3x-2cos3x.sinx=0\)

\(\Leftrightarrow2sinx-1-cos3x\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(1-cos3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cos3x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k2\pi}{3}\end{matrix}\right.\)

Chan Hina
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 13:34

 

ĐKXĐ: \(\left\{{}\begin{matrix}sinx< >0\\sin2x< >0\\sin4x< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< >k\Omega\\2x< >k\Omega\\4x< >k\Omega\end{matrix}\right.\Leftrightarrow x\ne\dfrac{k\Omega}{4}\)

\(\dfrac{1}{sinx}+\dfrac{1}{sin2x}+\dfrac{1}{sin4x}=0\)

=>\(\dfrac{1}{sinx}+cotx+\dfrac{1}{sin2x}+cot2x+\dfrac{1}{sin4x}+cot4x=cotx+cot2x+cot4x\)

=>\(\dfrac{1+cosx}{sinx}+\dfrac{1+cos2x}{sin2x}+\dfrac{1+cos4x}{sin4x}=cotx+cot2x+cot4x\)

=>\(\dfrac{2\cdot cos^2\left(\dfrac{x}{2}\right)}{2\cdot sin\left(\dfrac{x}{2}\right)\cdot cos\left(\dfrac{x}{2}\right)}+\dfrac{2\cdot cos^2x}{2\cdot sinx\cdot cosx}+\dfrac{2\cdot cos^22x}{2\cdot sin2x\cdot cos2x}=cotx+cot2x+cot4x\)

=>\(\dfrac{cos\left(\dfrac{x}{2}\right)}{sin\left(\dfrac{x}{2}\right)}+\dfrac{cosx}{sinx}+\dfrac{cos2x}{sin2x}=cotx+cot2x+cot4x\)

=>\(cot\left(\dfrac{x}{2}\right)+cotx+cot2x=cotx+cot2x+cot4x\)

=>\(cot4x=cot\left(\dfrac{x}{2}\right)\)

=>\(\left\{{}\begin{matrix}4x=\dfrac{x}{2}+k\Omega\\4x< >k\Omega\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{7}{2}x=k\Omega\\x< >\dfrac{k\Omega}{4}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{7}k\Omega\)

Chan Hina
Xem chi tiết
Minh Hiếu
25 tháng 9 2023 lúc 19:20

\(\dfrac{1}{sinx}+\dfrac{1}{sin2x}+\dfrac{1}{sin4x}=0\)

\(\dfrac{1}{sinx}+cotx+\dfrac{1}{sin2x}+cot2x+\dfrac{1}{sin4x}+cot4x=cotx+cot2x+cot4x\)

\(\dfrac{1+cosx}{sinx}+\dfrac{1+cos2x}{sin2x}+\dfrac{1+cos4x}{sin4x}=cotx+cot2x+cot4x\)

\(\dfrac{2cos^2\dfrac{x}{2}}{2sin\dfrac{x}{2}.cos\dfrac{x}{2}}+\dfrac{2cos^2x}{2sinx.cosx}+\dfrac{2cos^22x}{2sin2x.cos2x}=cotx+cot2x+cot4x\)

\(\dfrac{cos\dfrac{x}{2}}{sin\dfrac{x}{2}}+\dfrac{cosx}{sinx}+\dfrac{cos2x}{sin2x}=cotx+cot2x+cot4x\)

\(cot\dfrac{x}{2}+cotx+cot2x=cotx+cot2x+cot4x\)

\(cot\dfrac{x}{2}=cot4x\)

\(\Rightarrow\dfrac{x}{2}=4x+k\text{π}\)

\(\Leftrightarrow x=-\dfrac{k2\text{π}}{7}\)

Chi Linh
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2020 lúc 20:46

Đề là \(\sqrt{5}cos4x\) hay \(\sqrt{3}cos4x\) bạn?

Cao Văn Hào
Xem chi tiết
Akai Haruma
16 tháng 9 2020 lúc 21:20

Lời giải:

PT $\Leftrightarrow 2\sin 2x\cos 2x+2\cos 2x+4(\sin x+\cos x)=1+\cos ^22x-\sin ^22x=2\cos ^22x$

$\Leftrightarrow \sin 2x\cos 2x+\cos 2x+2(\sin x+\cos x)=\cos ^22x$

$\Leftrightarrow \cos 2x(\sin 2x+1-\cos 2x)+2(\sin x+\cos x)=0$

$\Leftrightarrow \cos 2x(2\sin x\cos x+2\sin ^2x)+2(\sin x+\cos x)=0$

$\Leftrightarrow \cos 2x\sin x(\cos x+\sin x)+(\sin x+\cos x)=0$

$\Leftrightarrow (\sin x+\cos x)(\cos 2x\sin x+1)=0$

Nếu $\sin x+\cos x=0$. Kết hợp $\sin ^2x+\cos ^2x=1$ suy ra $(\sin x, \cos x)=(\frac{1}{\sqrt{2}}; \frac{-1}{\sqrt{2}})$ và hoán vị

$\Rightarrow x=k\pi -\frac{\pi}{4}$ với $k$ nguyên.

Nếu $\cos 2x\sin x+1=0$

$\Leftrightarrow (1-2\sin ^2x)\sin x+1=0$

$\Leftrightarrow (1-\sin x)(2\sin ^2x+2\sin x+1)=0$

$\Rightarrow \sin x=1$

$\Rightarrow x=2k\pi +\frac{\pi}{2}$ với $k$ nguyên.

Quỳnh Anh
Xem chi tiết
Quỳnh Anh
10 tháng 10 2021 lúc 19:51

nguyễn thị hương giang 

nguyễn thị hương giang
10 tháng 10 2021 lúc 20:38

mình trình bày chút, giờ mình ms onl

 

Ngô Thành Chung
10 tháng 10 2021 lúc 20:41

Cộng cả 2 vế với cot8x

\(\dfrac{1}{sin8x}+cot8x=\dfrac{1+cos8x}{sin8x}=\dfrac{2cos^24x}{2sin4x.cos4x}=cot4x\)

Rồi cot4x lại đi với \(\dfrac{1}{sin4x}\) tạo cot2x ư

........... cứ như thế phương trình sẽ trở thành 

\(cot\dfrac{x}{2}=cot8x\)