Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Thuy Bui
Xem chi tiết
Akai Haruma
6 tháng 1 2023 lúc 20:07

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$2x^2+2=2(x^2+1)=(1^2+1^2)(x^2+1)\geq (x+1)^2$

$\Rightarrow Q=\frac{2x^2+2}{(x+1)^2}\geq \frac{(x+1)^2}{(x+1)^2}=1$

Vậy GTNN của $Q$ là $1$. Giá trị này đạt tại $\frac{1}{x}=\frac{1}{1}$ hay $x=1$

:vvv
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 21:33

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)

Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 9 2021 lúc 7:19

\(1,A=5^{n+2}+26\cdot5^n+8^{2n+1}\\ A=5^n\cdot25+26\cdot5^n+8\cdot8^{2n+1}\\ A=51\cdot5^n+8\cdot64^n\)

Ta có \(64:59R5\Rightarrow64^n:59R5\)

Vì vậy \(51\cdot5^n+8\cdot64^n:59R=5^n\cdot51+8\cdot5^n=5^n\left(51+8\right)=5^n\cdot59⋮59\)

Vậy \(A⋮59\)

(\(R\) là dư)

\(2,\\ a,2x\ge0;\left(x+2\right)^2\ge0,\forall x\\ \Leftrightarrow P=\dfrac{\left(x+2\right)^2}{2x}\ge0\\ P_{min}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

 

ỵyjfdfj
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 10 2021 lúc 23:49

\(A=\dfrac{1}{2}+\left|2x-1\right|\ge\dfrac{1}{2}\forall x\)

\(minA=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{\left|x\right|+2007}{2008}\ge\dfrac{0+2007}{2008}=\dfrac{2007}{2008}\)

\(minB=\dfrac{2007}{2008}\Leftrightarrow x=0\)

Hà An Nguyễn Khắc
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 4 2021 lúc 22:47

\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)

\(A=\left|2021-x\right|+\left|2020-x\right|\)

\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)

\(A_{min}=1\) khi \(2020\le x\le2021\)

HoaKhanhKhanh
Xem chi tiết
Khôi Bùi
19 tháng 4 2022 lúc 17:22

P/s : Mik nghĩ là \(\left(2x+1\right)^2\)

\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\left[\dfrac{x}{\left(2x+1\right)^2}+\dfrac{2x+1}{16}+\dfrac{2x+1}{16}+\dfrac{1}{16x}\right]+\dfrac{3}{4}\left(x+\dfrac{1}{4x}\right)-\dfrac{1}{8}\)

AD BĐT AM - GM ta được : \(\dfrac{x}{\left(2x+1\right)^2}+\dfrac{2x+1}{16}+\dfrac{2x+1}{16}+\dfrac{1}{16x}\ge4\sqrt[4]{\dfrac{1}{16^3}}=\dfrac{1}{2}\)

\(x+\dfrac{1}{4x}\ge2\sqrt{\dfrac{1}{4}}=1\) 

Suy ra : \(C\ge\dfrac{1}{2}+\dfrac{3}{4}.1-\dfrac{1}{8}=\dfrac{9}{8}\)

" = " \(\Leftrightarrow x=\dfrac{1}{2}\)

Quang Dương
Xem chi tiết
Nguyễn Huy Trường Lưu
Xem chi tiết
Nguyễn Đức Trí
30 tháng 8 2023 lúc 15:42

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

Nguyễn Đức Trí
30 tháng 8 2023 lúc 15:38

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

vung nguyen thi
Xem chi tiết
Unruly Kid
4 tháng 12 2017 lúc 6:50

a) \(\dfrac{\left(x-1\right)^2}{x-2}=\dfrac{\left(x-2\right)^2+2\left(x-2\right)+1}{x-2}=x-2+2+\dfrac{1}{x-2}\ge2+2\sqrt{\left(x-2\right).\dfrac{1}{x-2}}=4\)

GTNN là 4 khi x=3

nam do duy
Xem chi tiết

Biểu thức nào em?