Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Cho Δ ABC vuông tại A có góc B= 60O
a) Tính số đo góc C và so sánh độ dài 3 cạnh của Δ ABC
b) Vẽ BD là tia phân giác của góc ABC (D thuộc AC). Qua D vẽ DK vuông góc với BC ( K thuộc BC ). C/m ΔBAD=ΔBKD
c) C/m ΔBDC cân và K là trung điểm của BC
( cần vẽ hình )
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{C}+60^0=90^0\)
hay \(\widehat{C}=30^0\)
Vậy: \(\widehat{C}=30^0\)
a) Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\left(30^0< 60^0< 90^0\right)\)
mà cạnh đối diện với góc C là cạnh AB
và cạnh đối diện với góc B là cạnh AC
và cạnh đối diện với góc A là cạnh BC
nên AB<AC<BC(đpcm)
b) Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))
Do đó: ΔBAD=ΔBKD(Cạnh huyền-góc nhọn)
1. Cho Δ ABC, góc A=900, vẽ tia phân giác BD của góc B. Tính số đo góc B và C nếu góc BDC bằng 1050.
2. Cho Δ ABC, phân giác của góc B và C cắt nhau tại I, biết góc BIC=1300. Tính góc BAC.
1) góc BDA+góc BDC=180độ(kề bù)
=> góc BDA=180độ-góc BDC
=180độ-105độ
=75độ
xét tam giác BAD vuông ở A
=> góc ABD+góc ADB=90độ
=> góc ABD=90độ-góc ADB
=90độ-75độ
=15độ
góc ABD+góc CBD=15độ+15độ=30độ(vì BD là p.giác của góc B)
xét tam giác ABC vuông ở A
=> góc B+góc C=90độ
=> góc C=90độ-30độ
=60độ
2) mh k chắc chắn lắm
xét tam giác BIC có góc IBC+góc BIC +góc ICB=180độ(tổng 3 góc trog 1 tam giác =180độ)
=> góc IBC+góc ICB=180độ-góc BIC
=180độ-130độ
=50độ
xét tam giác ABC có góc A+góc B+góc C=180độ(tổng 3 góc trog 1 tam giác =180độ)
=> góc A=180độ-(góc B+góc C)
=180độ-(2 góc IBC+2 góc ICB)
=180độ-\(\left[2.\left(gócIBC+gócICB\right)\right]\)
=180độ-\(\left[2.50^0\right]\)
=180độ-100độ
=80độ
cho \(\Delta\)ABC = \(\Delta\) MNP với M = 40 độ ; 3B = 4C. tính số đo các góc của Δ ABC
Do: \(\Delta ABC=\Delta MNP\left(gt\right)\)
\(\Rightarrow\widehat{A}=\widehat{M}=40^o\) (hai góc tương ứng)
Mà: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^o-40^o=140^o\)
\(\Rightarrow3\widehat{B}+3\widehat{C}=3\cdot140^o\)
Lại có: \(3\widehat{B}=4\widehat{C}\)
\(\Rightarrow4\widehat{C}+3\widehat{C}=420^o\)
\(\Rightarrow7\widehat{C}=420^o\Rightarrow\widehat{C}=60^o\)
\(\Rightarrow\widehat{\text{B}}=140^o-60^o=80^o\)
Do ∆ABC = ∆MNP (gt)
⇒ ∠A = ∠M = 40⁰
Ta có:
∠A + ∠B + ∠C = 180⁰ (tổng ba góc trong ∆ABC)
⇒ ∠B + ∠C = 180⁰ - ∠A
= 180⁰ - 40⁰
= 140⁰
⇒ 3(∠B + ∠C) = 3.140⁰
⇒ 3∠B + 3∠C = 420⁰
Mà 3∠B = 4∠C
⇒ 4∠C + 3∠C = 420⁰
⇒ 7∠C = 420⁰
⇒ ∠C = 420⁰ : 7
⇒ ∠C = 60⁰
⇒ ∠B = 140⁰ - ∠C
= 140⁰ - 60⁰
= 80⁰
Vậy số đo các góc của ∆ABC là:
∠A = 40⁰; ∠B = 80⁰; ∠C = 60⁰
Câu 1. Cho Δ cân biết đỉnh bẳng 50o tính số đo góc kề bù số đo góc kề đáy
Câu 2. Cho Δ cân biết góc kề đáy bẳng 50o tính số đo đỉnh
Câu 2:
Gọi ΔABC cân tại A có \(\widehat{ABC}\) và \(\widehat{ACB}\) là hai góc ở đáy
Ta có: ΔABC cân tại A(Gt)
nên \(\widehat{B}=\widehat{C}\)(Hai góc ở đáy)
hay \(\widehat{B}=50^0\)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{A}=180^0-2\cdot\widehat{B}\)(Số đo của góc ở đỉnh trong ΔABC cân tại A)
\(\Leftrightarrow\widehat{A}=180^0-2\cdot50^0\)
hay \(\widehat{A}=80^0\)
Vậy: Khi Δ cân có góc kề đáy bằng 500 thì số đo góc ở đỉnh là 800
Cho Δ ABC có AB=AC. Kẻ BD vuông góc AC, CE vuông góc AB (D ϵ AC; E ϵ AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) Δ ABD = Δ ACE
b) BD = CE
c) Δ AOE = Δ AOD
d) Δ OEB = Δ ODC
e) AO là tia phân giác của góc BAC
mong mọi người giải giúp mình với ạ mình đang cần gấp
Cho Δ ABC vẽ tia phân giác AD của góc A biết góc ADB = 80o; góc B = \(\frac{3}{2}\) góc C. Tính các góc của Δ ABC.
Ta có hình vẽ:
Ta có: ADC + ADB = 180o (kề bù)
=> ADC + 80o = 180o
=> ADC = 180o - 80o = 100o
Vì AD là phân giác của góc A nên \(CAD=DAB=\frac{CAB}{2}\)
Xét Δ ACD có: CAD + ADC + ACD = 180o
=> \(\frac{CAB}{2}\) + 100o + ACD = 180o
=> \(\frac{CAB}{2}\) + ACD = 180o - 100o = 80o (1)
Xét Δ ADB có: ADB + DAB + ABD = 180o
=> 80o + \(\frac{CAB}{2}\) + ABC = 180o
=> \(\frac{CAB}{2}\) + ABC = 180o - 80o = 100o (2)
Từ (1) và (2) \(\Rightarrow\left(\frac{CAB}{2}+ABC\right)-\left(\frac{CAB}{2}+ACD\right)=100^o-80^o\)
=> ABC - ACD = 20o
=> \(\frac{3}{2}ACD-ACD=20^o\)
\(\Rightarrow\frac{1}{2}ACD=20^o\Rightarrow ACD=20^o:\frac{1}{2}=40^o\)
=> ABC = 20o + 40o = 60o
Lại có: ABC + ACD + CAB = 180o
=> 60o + 40o + CAB = 180o
=> 100o + CAB = 180o
=> CAB = 180o - 100o = 80o
Vậy CAB = 80o; ABC = 60o; ACB = ACD = 40o
Cho Δ ABC vuông tại A, biết AB = 6cm, BC = 10cm, đường cao AH.
a) CM: Δ ABC ~ Δ HBA
b) Tính tỉ số diện tích: HBA/ABC
c) Đường phân giác góc ABC cắt cạnh AC tại D. Tính DC.
d) Gọi I là giao điểm của AH và BD, K là hình chiếu của điểm C trên đường thẳng BD. CM: góc BIA = góc BAK.
a)Xét tam giác ABC và tam giá HBA, có:
Góc B chung
Góc BAC = góc BHA
--> Tam giác ABC ~ Tam giác HBA
Cho Δ ABC có AB=30cm, AC=40cm, BC=50cm
a) Chứng minh ΔABC là tam giác vuông
b) Tính sin góc B, tg góc C, và số đo góc B và góc C
c) Vẽ đường cao AH. Tính các độ dài AH, BH, HC
d) Vẽ đướng phân giác AD của Δ ABC. Tính độ dài DB, DC
e) Đường thẳng vuông góc AB tại B cắt AH tại E. Tính độ dài BE
(SỐ ĐO GÓC LÀM TRÒN ĐẾN PHÚT, ĐỘ DÀI CÁC ĐOẠN THẲNG LÀM TRÒN ĐẾN CHỮ SỐ THẬP PHÂN THỨ 2 )