( x - 1)² + = 30
a. x(x-1)(x+1)(x+2)=24
b.\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
c.\(\dfrac{x-29}{30}+\dfrac{x-30}{29}=\dfrac{29}{x-30}+\dfrac{30}{x-29}\)
a.
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right).\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(a=x^2+x-1\) , ta có pt:
\(\left(a+1\right)\left(a-1\right)-24=0\)
\(\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\)
\(\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=5\\a=-5\end{matrix}\right.\)
*Với a = 5 ta được:
\(x^2+x-1=5\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(2x+6\right)=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
*Với a = -5 ta được:
\(x^2+x-1=-5\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) ( loại)
Vậy pt có tập nghiệm là: \(s=\left\{-3;2\right\}\)
c)(ĐKXĐ: x khác 30;29)
\(\Leftrightarrow\dfrac{x-29}{30}-1+\dfrac{x-30}{29}-1=\dfrac{29}{x-30}-1+\dfrac{30}{x-29}-1\)
\(\Leftrightarrow\dfrac{x-59}{30}+\dfrac{x-59}{29}=\dfrac{x-59}{30-x}+\dfrac{x-59}{29-x}\)
\(\Leftrightarrow x=59\)(tm) or \(\dfrac{1}{30}+\dfrac{1}{29}-\dfrac{1}{30-x}-\dfrac{1}{29-x}=0\)
\(\Leftrightarrow\dfrac{-x}{30\left(30-x\right)}+\dfrac{-x}{29\left(29-x\right)}=0\)
\(\Leftrightarrow x=0\)(tm) or \(\dfrac{1}{30\left(30-x\right)}+\dfrac{1}{29\left(29-x\right)}=0\)
\(\Leftrightarrow1741-59x=0\)
\(\Leftrightarrow x=\dfrac{1741}{59}\left(tm\right)\)
Vậy S={0;\(\dfrac{1741}{59}\);59}
b)(ĐKXĐ:x khác 2;3;4;5;6)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}-\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}+\dfrac{1}{x-6}-\dfrac{1}{x-5}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-2}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-6\right)\left(x-2\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow x^2-8x+12=32\)
\(\Leftrightarrow x^2-8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow x=-2\) or x=10(đều thỏa)
Vậy ...
f(x)=x^2/1-2x+2 x^2 tính a=f(1/30)+f(2/30)+..+f(29/30
Giait pt:
\(\frac{x-29}{30}+\frac{x-30}{29}=\frac{29}{x-30}+\frac{30}{x-29}\)
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
giải giúp mình với ạ 30/x-1/2=30/x+5+1/2
\(\dfrac{30}{x}-\dfrac{1}{2}=\dfrac{30}{x}+5+\dfrac{1}{2}\)
`<=> 60/(2x) - x/(2x) = 60/(2x) + (10x)/(2x) + x/(2x)`
`=> 60-x=60+10x +x`
`<=> 60-60=10x+x+x`
`<=>0 = 13x`
`<=>13x=0`
`<=>x=0`
Vậy phương trình có nghiệm `x=0`
15: nếu \(\dfrac{x}{-15}\)=\(\dfrac{-60}{x}\) thì kết quả x bằng:
A) x=30 B) x=30 hoặc x=-1 C) x=3= hoặc x=-30 D) x=\(\dfrac{60}{15}\)
\(x^2=900\Leftrightarrow x^2=30^2\Rightarrow x=30\)
Chọn A
(7/16 + -1/8 + 9/32) ;5/4
-25/30 x 37/44 + -25/30 x 13/44+-25/30 x -6/44
\(\dfrac{7}{16}+\dfrac{-1}{8}+\dfrac{9}{32}=\dfrac{14}{32}-\dfrac{4}{32}+\dfrac{9}{32}=\dfrac{19}{32}\)
\(\dfrac{5}{4}-\dfrac{25}{30}\times\dfrac{37}{44}+\dfrac{-25}{30}\times\dfrac{13}{44}+\dfrac{-25}{30}\times\dfrac{-6}{44}\)
\(=-\dfrac{25}{30}\times\left(\dfrac{5}{4}+\dfrac{37}{44}+\dfrac{13}{44}-\dfrac{6}{44}\right)\)
\(=-\dfrac{25}{30}\times\left(\dfrac{55}{44}+\dfrac{37}{44}+\dfrac{13}{44}-\dfrac{6}{44}\right)\)
\(=-\dfrac{25}{30}\times\dfrac{99}{44}\)
\(=-\dfrac{5}{6}\times\dfrac{9}{4}\)
\(=-\dfrac{15}{8}\)
\(\left(\dfrac{7}{16}+\dfrac{-1}{8}+\dfrac{9}{32}\right):\dfrac{5}{4}\)
\(=\left(\dfrac{14}{32}+\dfrac{-4}{32}+\dfrac{9}{32}\right):\dfrac{5}{4}\)
\(=\dfrac{19}{32}:\dfrac{5}{4}\)
\(=\dfrac{19}{32}.\dfrac{4}{5}=\dfrac{19.4}{32.5}=\dfrac{19}{40}\)
\(\dfrac{-25}{30}.\dfrac{37}{44}+\dfrac{-25}{30}.\dfrac{13}{44}+\dfrac{-25}{30}.\dfrac{-6}{44}\)
\(=\dfrac{-25}{30}.\left(\dfrac{37}{44}+\dfrac{13}{44}+\dfrac{-6}{44}\right)\)
\(=\dfrac{-25}{30}.\dfrac{44}{44}=\dfrac{-5}{6}.1=-\dfrac{5}{6}\)
tìm x thuộc N biết:
a)x+(x+1)+(x+2)+(x+30)+...+(x+30)=1240
b)1+2+3+...+x=210
a) x.31+(1+2+3+4+.....+30)=1240
x.31+465=1240
x.31=1240-465
x.31=775
x=775:31
x=25
b) (1+x).x:2=210
(1+x).x=210.2
(1+x).x=420
Vì 1+x và x là 2 số nhiên liên tiếp và 420=20.21
=> x=20
Giải phương trình:
\(\frac{x-29}{30}\frac{x-30}{29}=\frac{29}{x-30}+\frac{30}{x-29}\)
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
mn giúp mk với ak
\(\dfrac{30}{x}\)-\(\dfrac{30}{x+3}\)=\(\dfrac{1}{2}\)
Ta có: \(\dfrac{30}{x}-\dfrac{30}{x+3}=\dfrac{1}{2}\)
\(\Leftrightarrow60\left(x+3\right)-60x=x\left(x+3\right)\)
\(\Leftrightarrow x^2+3x-180=0\)
\(\Leftrightarrow x^2+15x-12x-180=0\)
\(\Leftrightarrow\left(x+15\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\left(nhận\right)\\x=12\left(nhận\right)\end{matrix}\right.\)
Giải pt: 30/x - 30/x+5 =1
60/x - 60/x+2 =1
Bài làm:
1) đk: \(x\ne0;x\ne-5\)
Ta có: \(\frac{30}{x}-\frac{30}{x+5}=1\)
\(\Leftrightarrow\frac{30\left(x+5\right)-30x}{x\left(x+5\right)}=1\)
\(\Leftrightarrow x^2+5x=150\)
\(\Leftrightarrow x^2+5x-150=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-15\end{cases}}\)
2) đk: \(x\ne0;x\ne-2\)
Ta có: \(\frac{60}{x}-\frac{60}{x+2}=1\)
\(\Leftrightarrow\frac{60\left(x+2\right)-60x}{x\left(x+2\right)}=1\)
\(\Leftrightarrow x^2+2x=120\)
\(\Leftrightarrow x^2+2x-120=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-12\end{cases}}\)
\(\frac{30}{x}-\frac{30}{x+5}=1\)( ĐKXĐ : \(x\ne0;x\ne-5\))
<=> \(30\left(\frac{1}{x}-\frac{1}{x+5}\right)=1\)
<=> \(30\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{x\left(x+5\right)}\right)=1\)
<=> \(30\left(\frac{5}{x\left(x+5\right)}\right)=1\)
<=> \(\frac{5}{x\left(x+5\right)}=\frac{1}{30}\)
<=> \(5\cdot30=x\left(x+5\right)\)
<=> \(x^2+5x-150=0\)
<=> \(x^2+15x-10x-150=0\)
<=> \(x\left(x+15\right)-10\left(x+15\right)=0\)
<=> \(\left(x-10\right)\left(x+15\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-15\end{cases}}\)( tmđk )
Vậy S = { 10 ; -15 }
\(\frac{60}{x}-\frac{60}{x+2}=1\)( ĐKXĐ : \(x\ne0;x\ne-2\))
<=> \(60\left(\frac{1}{x}-\frac{1}{x+2}\right)=1\)
<=> \(60\left(\frac{x+2}{x\left(x+2\right)}-\frac{x}{x\left(x+2\right)}\right)=1\)
<=> \(60\left(\frac{2}{x\left(x+2\right)}\right)=1\)
<=> \(\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
<=> \(2\cdot60=x\left(x+2\right)\)
<=> \(x^2+2x-120=0\)
<=> \(x^2+12x-10x-120=0\)
<=> \(x\left(x+12\right)-10\left(x+12\right)=0\)
<=> \(\left(x-10\right)\left(x+12\right)=0\)
<=> \(\orbr{\begin{cases}x-10=0\\x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-12\end{cases}}\)
Vậy S = { 10 ; -12 }
a, \(\frac{30}{x}-\frac{30}{x+5}=1\) b, \(\frac{60}{x}-\frac{60}{x+2}=1\)
ĐKXĐ: x khác 0 ĐKXĐ: x khác 0
x khác -5 x khác -2
Ta có: Ta có:
\(\frac{30}{x}-\frac{30}{x+5}=1\) \(\frac{60}{x}-\frac{60}{x+2}=1\)
<=>\(\frac{30\left(x+5\right)}{x\left(x+5\right)}-\frac{30x}{x\left(x+5\right)}=\frac{x\left(x+5\right)}{x\left(x+5\right)}\) <=>\(\frac{60\left(x+2\right)}{x\left(x+2\right)}-\frac{60x}{x\left(x+2\right)}=\frac{x\left(x+2\right)}{x\left(x+2\right)}\)
=>30(x+5)-30x=x(x+5) =>60(x+2)-60x=x(x+2)
<=>30x+150-30x=x2+5x <=>60x+120-60x=x2+2x
<=>150=x2+5x <=>120=x2+2x
<=>0=x2+5x-150 <=>0=x2+2x-120
<=>0=x2-10x+15x-150 <=>x2-10x+12x-120
<=>0=(x2-10x)+(15x-150) <=>(x2-10x)+(12x-120)
<=>0=x(x-10)+15(x-10) <=>x(x-10)+12(x-10)
<=>0=(x-10)(x+15) <=>(x-10)(x+12)
<=>x-10=0 hoặc x+15=0 <=>x-10=0 hoặc x+12=0
1, x-10=0 2,x+15=0 1, x-10=0 2, x+12=0
<=>x=10 <=>x=-15 <=>x=10 <=>x=-12
( thỏa mãn ĐKXĐ) (thỏa mãn ĐKXĐ)
Vậy tâp nghiệm của PT là S={10;-15} Vậy tập ngiệm của PT là S={10;-12}