Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ tiền châu
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi

Lê Thu Hiền
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Eren
19 tháng 1 2022 lúc 22:25

Áp dụng bđt Cô-si: 

\(2.1.\sqrt{1-x}+x\le2.\dfrac{1+1-x}{2}+x=2\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{1-x}=1\) <=> x = 0

Nguyễn Việt Lâm
19 tháng 1 2022 lúc 22:26

\(2.1.\sqrt{1-x}+x\le1+1-x+x=2\)

Dấu "=" xảy ra khi \(1=1-x\Rightarrow x=0\)

ILoveMath
19 tháng 1 2022 lúc 22:27
cherry moon
Xem chi tiết
Kiệt Nguyễn
27 tháng 10 2019 lúc 21:09

a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)

Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)

\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)

Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
Hùng Hoàng
Xem chi tiết
Huy
Xem chi tiết
Akai Haruma
7 tháng 7 2021 lúc 17:31

1.

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$

$\Leftrightarrow (x+2)(x+3)\leq 0$

$\Leftrightarrow -3\leq x\leq -2$

 

Akai Haruma
7 tháng 7 2021 lúc 18:29

2. ĐKXĐ: $x\geq 1$

\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)

\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)

\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)

Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$

$\Leftrightarrow 1-\sqrt{x-1}\geq 0$

$\Leftrightarrow 0\leq x\leq 2$

Akai Haruma
7 tháng 7 2021 lúc 19:48

3.

$C\sqrt{2}=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x+2\sqrt{4x-1}}$

$=2\sqrt{(4x-1)+2\sqrt{4x-1}+1}=2\sqrt{(\sqrt{4x-1}+1)^2}$
$=2|\sqrt{4x-1}+1|$

Vì $\sqrt{4x-1}\geq 0$ nên $|\sqrt{4x-1}+1|\geq 1$

$\Rightarrow C\sqrt{2}\geq 2$

$\Rightarrow C\geq \sqrt{2}$

Vậy $C_{\min}=\sqrt{2}$. Giá trị này đạt tại $x=\frac{1}{4}$

Điệp Đỗ
Xem chi tiết