\(A=\sqrt{5x^2+2x+1}+\sqrt{5x^2-14x+10}\)
\(A=\sqrt{5\left(x+\dfrac{1}{5}\right)^2+\left(\dfrac{2}{\sqrt{5}}\right)^2}+\sqrt{5\left(\dfrac{7}{5}-x\right)^2+\left(\dfrac{1}{\sqrt{5}}\right)^2}\)
\(A\ge\sqrt{5\left(x+\dfrac{1}{5}+\dfrac{7}{5}-x\right)^2+\left(\dfrac{2}{\sqrt{5}}+\dfrac{1}{\sqrt{5}}\right)^2}=\dfrac{\sqrt{365}}{5}\)
Dấu "=" xảy ra khi \(x=\dfrac{13}{15}\)