1.Tìm x, biết:
a)\(\sqrt{25x^2}=100\); b) \((\sqrt{3}-\sqrt{2})x=\sqrt{27}-\sqrt{18}\).
Câu 2: Tìm x biết:
a. \(\sqrt{\left(2x-3\right)^2}=7\)
b. \(\sqrt{64x-121}-\sqrt{25x-50}-\sqrt{4x-1}=20\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a: \(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
Tìm x,biết:
a)(1-3x)2-9x(1+x)=-29
b)(2x-1)3-(x-2)2=x(4-25x)-6
\(a,\Rightarrow1-6x+9x^2-9x-9x^2=-29\\ \Rightarrow-15x=-30\Rightarrow x=2\\ b,\Rightarrow8x^3-12x^2+6x-1-x^2+4x-4=4x-25x^2-6\\ \Rightarrow8x^3+12x^2+6x+1=0\\ \Rightarrow\left(2x+1\right)^3=0\\ \Rightarrow2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
1) ĐKXĐ: \(x\ge-2\)
\(pt\Leftrightarrow\dfrac{\sqrt{x+2}}{2}+5\sqrt{x+2}-2\sqrt{x+2}=14\)
\(\Leftrightarrow\dfrac{\sqrt{x+2}+6\sqrt{x+2}}{2}=14\Leftrightarrow7\sqrt{x+2}=28\)
\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)
2) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x+3=x^2\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
3) \(pt\Leftrightarrow\sqrt{\left(5x+2\right)^2}=1\Leftrightarrow\left|5x+2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=1\\5x+2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4) ĐKXĐ: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{2}\\x\le-1\end{matrix}\right.\)
\(pt\Leftrightarrow\dfrac{x+1}{2x-1}=4\Leftrightarrow x+1=8x-4\)
\(\Leftrightarrow7x=5\Leftrightarrow x=\dfrac{5}{7}\left(tm\right)\)
5) ĐKXĐ: \(x\ge2\)
\(pt\Leftrightarrow\dfrac{x-2}{3x+1}=36\)
\(\Leftrightarrow x-2=108x+36\Leftrightarrow107x=-38\Leftrightarrow x=-\dfrac{38}{107}\left(ktm\right)\)
Vậy \(S=\varnothing\)
Tìm x, biết:
a, \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
b, \(\sqrt{1-12x+36x^2}=5\)
c, \(\sqrt{x+2\sqrt{x-1}}=2\)
Làm a, c là tiêu biểu thôi, bài b đơn giản.
a) \(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=\sqrt{x-1}-1\)
ĐKXĐ: $x\ge 1.$ Do $VT\ge 0 \Rightarrow VT\ge 0 \to x\ge 2.$
Ta có \(VT=\sqrt{\left[\sqrt{x-1}-1\right]^2}=\left|\sqrt{x-1}-1\right|=VP\) (vì \(\sqrt{x-1}-1=VP\ge0.\))
Vậy phương trình có vô số nghiệm.
c) Ta có:
\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=2\)
ĐKXĐ: $x\ge 1.$
Ta có: \(VT=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|=\sqrt{x-1}+1.\)
(vì $\sqrt{x-1}+1>0\forall x\ge 1.$)
Ta có: \(\sqrt{x-1}+1=2\Rightarrow x=2.\) (thỏa mãn)
b: Ta có: \(\sqrt{36x^2-12x+1}=5\)
\(\Leftrightarrow\left|6x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Tìm x biết:
a) \(\sqrt{x}\) < 3
b) \(\sqrt{4-x}\) ≤ 2
c) \(\sqrt{x+2}\) = \(\sqrt{4-x}\)
d) \(\sqrt{x^{2^{ }}-1}\) = x - 1
a) \(\sqrt{x}< 3\)<=> x<9
b)\(\sqrt{4-x}\) ≤ 2 <=> 4 - x ≤ 4 <=> x≥0
c)\(\sqrt{x+2}=\sqrt{4-x}\) <=> x+2=4-x <=>2x=2<=>x=1
Vậy x=1
d)\(\sqrt{x^2-1}\)=x-1 <=> x\(^2\)-1=x\(^2\)-2x+1 <=> x\(^2\)-\(x^2\)-2x+1+1=0 <=> 2x=2 <=> x=1
Vậy x=1
a) ĐK: x ≥ 0
⇔ x<9 (TM)
b) ĐK: x ≤ 4
⇔ 4 - x < 4
⇔ x > 0
Vậy 0 < x ≤ 4
c) ĐK: -2 ≤ x ≤ 4
Bình phương 2 vế của phương trình, ta có:
x+2=4-x
⇔ 2x = 2
⇔ x=1 (TM)
d) ĐK: x ≥ 1
Bình phương 2 vế của phương trình, ta có:
\(\text{x}^{\text{2}}-11=x^2-2x+1\)
⇔ 2x = 12
⇔ x = 6 (TM)
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
Câu 2: Tìm x biết:
a. \(\sqrt{x-3}=5\)
b. \(\sqrt{2x-1}=\sqrt{3}\)
c. \(\sqrt{1-x}=-1\)
d. \(\sqrt{\left(x-1\right)^2}=1\)
\(a,ĐK:x\ge3\\ PT\Leftrightarrow x-3=5\Leftrightarrow x=8\left(tm\right)\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-1=3\Leftrightarrow x=2\left(tm\right)\\ c,Vì.\sqrt{1-x}\ge0>-1.nên.pt.vô.nghiệm\\ d,PT\Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\\1-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
a) \(\sqrt{x-3}=5\) (1)
ĐKXĐ: \(x\ge3\)
\(\left(1\right)\Leftrightarrow x-3=25\)
\(\Leftrightarrow x=28\) (nhận)
Vậy \(x=28\)
b) \(\sqrt{2x-1}=\sqrt{3}\) (2)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\left(2\right)\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\) (nhận)
Vậy \(x=2\)
c) \(\sqrt{1-x}=-1\)
Không tìm được \(x\) vì \(\sqrt{1-x}\ge0\) (với mọi \(x\le1\))
d) \(\sqrt{\left(x-1\right)^2}=1\) (3)
ĐKXĐ: Với mọi \(x\in R\)
\(\left(3\right)\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow x-1=1\) (khi \(x\ge1\)) hoặc \(1-x=1\) (khi \(x< 1\))
* \(x-1=1\)
\(\Leftrightarrow x=2\) (nhận)
* \(1-x=1\)
\(\Leftrightarrow x=0\) (nhận)
Vậy \(x=0;x=2\)
bài 2 Tìm x không âm, biết:
a)\(\sqrt{x}\) < \(\sqrt{3}\)
b) \(\sqrt{3x}\) < 6
c)\(\dfrac{1}{2}\)\(\sqrt{5x}\) <10
a) \(\sqrt{x}< \sqrt{3}\Rightarrow x< 3\Rightarrow0\le x< 3\)
b) \(\sqrt{3x}< 6\Rightarrow3x< 36\Rightarrow x< 12\Rightarrow0\le x< 12\)
c) \(\dfrac{1}{2}\sqrt{5x}< 10\Rightarrow\sqrt{5x}< 20\Rightarrow5x< 400\Rightarrow x< 80\Rightarrow0\le x< 80\)
a) \(0\le x< 3\)
b) \(0\le x< 12\)
tìm x biết:
a \(\sqrt{\left(x+1\right)^2}\) = 5
b, 5\(\sqrt{x-9}\) - \(\sqrt{4\left(x-1\right)}\) + \(\sqrt{36\left(x-1\right)}\) -18 = 0
a: \(\sqrt{\left(x+1\right)^2}=5\)(ĐKXĐ: \(x\in R\))
=>|x+1|=5
=>\(\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-6\left(nhận\right)\end{matrix}\right.\)
b: Sửa đề: \(5\sqrt{9x-9}-\sqrt{4\left(x-1\right)}+\sqrt{36\left(x-1\right)}-18=0\)
ĐKXĐ: x>=1
\(PT\Leftrightarrow5\cdot3\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}-18=0\)
=>\(15\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}=18\)
=>\(19\sqrt{x-1}=18\)
=>\(\sqrt{x-1}=\dfrac{18}{19}\)
=>\(x-1=\left(\dfrac{18}{19}\right)^2=\dfrac{324}{361}\)
=>\(x=\dfrac{324}{361}+1=\dfrac{324+361}{361}=\dfrac{685}{361}\)
Lời giải:
a. PT $\Leftrightarrow |x+1|=5$
$\Leftrightarrow x+1=\pm 5\Leftrightarrow x=4$ hoặc $x=-6$
b. ** Sửa $x-9$ thành $x-1$
ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow 5\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}-18=0$
$\Leftrightarrow (5-2+6)\sqrt{x-1}=18$
$\Leftrightarrow 9\sqrt{x-1}=18$
$\Leftrightarrow \sqrt{x-1}=2$
$\Leftrightarrow x-1=4$
$\Leftrightarrow x=5$ (tm)
Tìm x biết:
a, \(\sqrt{x-1}\) = 3 b,\(x^2\) - 64 = 0
c,\(x^2\) + 16 = 25 d,|\(\sqrt{x}-3\)| + 3 = 9
a, ĐKXĐ:\(x\ge1\)
\(\sqrt{x-1}=3\\ \Rightarrow x-1=9\\ \Rightarrow x=10\)
\(b,x^2-64=0\\ \Rightarrow\left(x-8\right)\left(x+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\\ c,x^2+16=25\\ \Rightarrow x^2=9\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ d,ĐKXĐ:x\ge0\\ \left|\sqrt{x}-3\right|+3=9\\ \Rightarrow\left|\sqrt{x}-3\right|=6\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}-3=-6\\x-3=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}=-3\left(vô.lí\right)\\x=9\left(tm\right)\end{matrix}\right.\)