phương trình nghiệm nguyên a^3b^2+(a^3-2ac)b+c(c-ạ)=0
giải phương trình nghiệm nguyên
a^3+3b=c^3
b^3+3a=d
giúp e với ạ
a,Giải phương trình nghiệm nguyên: \(\left(x+1\right)^4-\left(x-1\right)^4=8y^2\)
b, Cho a,b,c là các số nguyên sao cho \(a^2-bc,b^2+2ac,c^2-4ab\) là các đồng thời chia hết cho 3. CMR a+b+c chia hết cho 3
a.
\(\Leftrightarrow8x^3+8x=8y^2\)
\(\Leftrightarrow x\left(x^2+1\right)=y^2\)
Gọi \(d=ƯC\left(x;x^2+1\right)\)
\(\Rightarrow x^2+1-x.x⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow x\) và \(x^2+1\) nguyên tố cùng nhau
\(\Rightarrow\left\{{}\begin{matrix}x=m^2\\x^2+1=n^2\end{matrix}\right.\)
\(x^2+1=n^2\Rightarrow\left(n-x\right)\left(n+x\right)=1\)
\(\Rightarrow x=0\)
\(\Rightarrow y=0\)
TH1: a;b;c đồng dư khi chia 3 \(\Rightarrow a+b+c⋮3\)
TH2: 3 số a;b;c có số dư đôi một khác nhau khi chia cho 3 \(\Rightarrow a+b+c⋮3\)
TH3: 3 số a;b;c có 2 số đồng dư khi chia 3, một số khác số dư. Không mất tính tổng quát, giả sử \(a,b\) đồng dư khi chia 3 còn c khác số dư
\(\Rightarrow\left(a-b\right)^2⋮3\) còn \(\left(a-c\right)^2+\left(b-c\right)^2\) chia 3 luôn dư 1 hoặc 2
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮̸3\) (1)
Mặt khác từ giả thiết:
\(\left\{{}\begin{matrix}b^2-ac+3ac⋮3\\c^2-ab-3ab⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2-ac⋮3\\c^2-ab⋮3\end{matrix}\right.\)
\(\Rightarrow2\left(a^2-bc\right)+2\left(b^2-ac\right)+2\left(c^2-ab\right)⋮3\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮3\) trái với (1) ktm
Vậy \(a+b+c⋮3\)
Nếu phương trình ax4 + bx2 + c = 0 ( a khác 0) có hai nghiệm x1, x2 thì:
A. x1 + x2 = -b/a
B. x1 + x22 = -b/2a
C. x1 + x2 = 0
D. x1 . x2 = c/a
1/ Cho a,b,c là ba số dương. Chứng minh rằng : \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge1\)
2/ Tìm tất cả các cặp số nguyên tố (x;y) là nghiệm của phương trình: \(x^2-2y^2-1=0\)
bài 1 áp dụng bất đẳng thức Cô-si swatch ta có:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}\)=1
dấu bằng xảy ra khi nào bạn tự tìm nh
cho a,b,c thoả mãn: a khác 0 ; 2a+3b+6c=0.
tìm khoảng cách nhỏ nhất của 2 nghiệm phương trình ax^2+bx+c=0
Cho phương trình 3x2 + ax + 3b + 27=0 ( x là ẩn; a, b là các số nguyên khác 0). Giả sử phương trình có các nghiệm đều nguyên. Chứng minh rằng a2 + b2 là hợp số
Xét các số nguyên dương a,b sao cho phương trình b ln 2 x + a ln x + 3 = 0 có hai nghiệm phân biệt x 1 , x 2 và phương trình 3 log 2 x + a log x + b = 0 có hai nghiệm phân biệt x 3 , x 4 thỏa mãn ln x 1 x 2 10 > log x 3 x 4 6 Tính giá trị nhỏ nhất của S=5a + 3b
A. 102
B. 101
C. 96
D. 99
Đề thi môn toán 8 học kì 2
Câu 1 Giải các phương trình sau:
a) x-2=0, b) (x+5)(2x-7)=0. =c) . 5x/x+2 =4
Câu 2. a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số: a )2x-6>_(hoặc bằng)=0.
b) Cho a<b. Chứng minh
: -3a+7> -3b+7
Câu 3 (1,0 điểm). Giải bài toán bằng cách lập phương trình:
Một người đi ôtô từ huyện Cao Lãnh đến huyện Thanh Bình với vận tốc 40 km/h. Sau khi đi đến huyện Thanh Bình người đó giải quyết công việc hết 30 phút .rồi quay về huyện Cao Lãnh với vận tốc 50 km/h. Biết thời gian cả đi và về hết 2 giờ 18 phút (kể cả thời gian giải quyết công việc). Tính quãngđường từ huyện Cao Lãnh đến huyện Thanh Bình.
Câu 4 (1,0 điểm). Một container chứa hàng có kích thước như sau: dài 6m, rộng 2,4m; cao 2,6m. Tínhthể tích của thùng container.
Câu 5 (3,0 điểm). Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Kẻ AH vuông góc với BC tại H
a) Chứng minh: tamgiácHBA đồng dạng với tamgiácABC.
b) Chứng minh: AB2 =BH.BC
c) Tính độ dài cạnh BC, BH.
Phân giác của góc ACB cắt AH tại E và cắt AB tại D. Tính tỉ số diện tích của tam giác ACD và tam giácHCE.
Giúp mình với mn ơii .mai mình nộp r
GIUP VOI MOI NGUOI OI .CUU EM VOIIIIII !!!!!!!!!!
câu 1
a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)
cho a,b.c là 3 só thực thỏa mãn 5a+3b+2c = 0.Chứng minh rằng phương trình ax^2 +bx+c = 0 luôn có nghiệm