Chứng minh các mệnh đề sau
a) ∀ n ∈ N, n2+3n+2 chia hết cho 2
b) ∃ n ∈ N, (n2+1) chia hết cho 4
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Cho các mệnh đề P: “n là số lẻ”; Q: “ n2 – 1 là số chia hết cho 4”. Mệnh đề đảo của mệnh đề P ⇒ Q là:
A. Nếu n2 – 1 là số chia hết cho 4 thì n là số lẻ
B. Nếu n là số lẻ thì n2 – 1 là số chia hết cho 4.
C. Nếu n là số chẵn thì n2 – 1 là số chia hết cho 4
D. Nếu n2 – 1 là số không chia hết cho 4 thì n là số lẻ
Đáp án: A
Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P. Nghĩa là, nếu n2 – 1 là số chia hết cho 4 thì n là số lẻ. ⇒ A đúng.
chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
a) Ta có n3 - n + 4
= n(n2 - 1) + 4
= (n - 1)n(n + 1) + 4
Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp)
mà 4 \(⋮̸\)3
=> n3 - n + 4 không chia hết cho 3
Cho mệnh đề: "Với mọi số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3". Mệnh đề phủ định của mệnh đề trên là mệnh đề nào dưới đây?
A. "Tồn tại số nguyên n không chia hết cho 3, n 2 − 1 không chia hết cho 3";
B. "Tồn tại số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3";
C. "Tồn tại số nguyên n chia hết cho 3, n 2 − 1 chia hết cho 3";
D. "Tồn tại số nguyên n chia hết cho 3, n 2 − 1 không chia hết cho 3";
Mệnh đề: "Với mọi số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3".
Mệnh đề phủ định của mệnh đề trên là "Tồn tại số nguyên n không chia hết cho 3, n 2 − 1 không chia hết cho 3".
Mệnh đề phủ định của mệnh đề " ∀ x ∈ X ; P ( x ) " là " ∃ x ∈ X ; P ( x ) ¯ "
Đáp án A
Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Chứng minh rằng(n2+3n+1)2-1 chia hết cho 24 với n là số tự nhiên.
`(n^2+3n+1)^2-1`
`=(n^2+3n+1)-1^2`
`=(n^2+3n+1+1)(n^2+3n+1-1)`
`=(n^2+3n+2)(n^2+3n)`
`=(n+1)(n+2)n(n+3)`
`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.
`=> n(n+1)(n+2)(n+3) vdots 24`
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
: Tìm n є N sao cho:
a/ n + 6 chia hết cho n + 2
b/ 2n + 3 chia hết cho n – 2
c/ 3n + 1 chia hết cho 11 – 2n
d/ n2 + 4 chia hết cho n + 1
cách khác : a/ n + 6 = (n + 2) + 4 chia het cho n + 2 => 4 chia het cho n + 2 => n + 2 la uoc cua 4
=>ma n + 2 >=2 nen ta co hai truong hop
n + 2 = 4 => n = 2;
n + 2 = 2 => n = 0,
Vay n = 2 ; 0.
b/ Tuong tu cau a
c/ (3n + 1) Chia het cho 11 - 2n => [2(3n + 1) + 3(11 - 2n)] chia het cho 11 - 2n
=> 35 chia het cho 11 - 2n =>
+)11 - 2n = 1 => n = 5
+)11 - 2n = 5 => n = 3
+)11 - 2n = 7 => n = 2
+)11 - 2n = 35 => n < 0 (loai)
+)11 - 2n = -1 => n = 6
+)11 - 2n = - 5 => n = 8
+)11 - 2n = -7 => n = 9
+)11 - 2n = -35 => n=23
Vay : n = 2;3;5;6;8;9;23
d/ B = (n2 + 4):(n + 1) = [(n +1)(n - 1) + 5]:(n + 1) = n - 1 + 5/(n +1)
Do n2 + 4 chia het cho n + 1 => 5 chia het cho n +1 => n = 0;4.
a) n+6 chia hết cho n+2=> n+2 là ước của n+6=>n+2 là Ư(4)={-4,-2,-1,1,2,4}
n+2=-4=>n=-6
n+2=-2=>n=-4
n+2=-1=>n=-3
n+2=1=>n=-1
n+2=2=>n=0
n+2=4=>n=2
vậy x thuộc {-6,-4,-3,-1,0,2}
b) tương tự
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
c) 27 - 5n chia hết cho n
vì 5n chia hêt cho n => để 27 - 5n chia hết cho n thì 27 phải chia hết cho n
=>n Є {1;3; 9;27}
d) n+6 chia hết cho n + 2
ta có n+6= (n+2) +4
vì n+2 chia hết cho n+2 =>để (n+2) +4 chia hết cho n + 2 thì 4 phải chia hết cho n+2
=>(n+2) Є {2;4} (vì n+2 >=2)
=>n Є {0;2}
e) 2n + 3 chia hết cho n + 2 - 2 hay 2n + 3 chia hết cho n
vì 2n chia hết cho n =>để 2n + 3 chia hết cho n thì 3 phải chia hêt cho n
=>n Є {1;3}
f) 3n + 1 chia hết cho 11 - 2n
để 11 -2n >=0 => n Є {0;1;2;3;4;5}
mặt khác để 3n + 1 chia hết cho 11 - 2n thì
3n+1 >= 11-2n =>5n - 2n+1 >=10-2n +1
=>5n >= 10 =>n>=2 => n Є {2;3;4;5}
* với n=2 => 3n+1=7 ; 11-2n=7 =>3n+1 chia hết cho 11-2n vậy n=2 thỏa mãn
*với n=3 => 3n+1=10; 11-2n=5 =>3n+1 chia hết cho 11-2n vậy n=3 thỏa mãn
* với n=4 =>3n+1=13; 11-2n=3 =>3n+1 không chia hết cho 11-2n vậy n=4 không thỏa mãn
*với n=5 =>3n+1=16; 11-2n=1 =>3n+1 chia hết cho 11-2n vậy n=5 thỏa mãn
vậy n Є {2;3;5}
Tìm n є N sao cho:
a/ n + 6 chia hết cho n + 2
b/ 2n + 3 chia hết cho n – 2
c/ 3n + 1 chia hết cho 11 – 2n
d/ n2 + 4 chia hết cho n + 1
a. n + 6 chia hết cho n + 2
=> n + 2 + 4 chia hết cho n + 2
Mà n + 2 chia hết cho n + 2
=> 4 chia hết cho n + 2
=> n + 2 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}
Mà n thuộc N
=> n thuộc {0; 2}.
b. 2n + 3 chia hết cho n - 2
=> 2n - 4 + 7 chia hết cho n - 2
=> 2.(n - 2) + 7 chia hết cho n - 2
Mà 2.(n - 2) chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = {-7; -1; 1; 7}
Mà n thuộc N
=> n thuộc {1; 3; 9}.
c. 3n + 1 chia hết cho 11 - 2n
=> 3n + 1 chia hết cho -(11 - 2n)
=> 3n + 1 chia hết cho 2n - 11
=> 2.(3n + 1) chia hết cho 2n - 11
=> 6n + 2 chia hết cho 2n - 11
=> 6n - 33 + 35 chia hết cho 2n - 11
=> 3.(2n - 11) + 35 chia hết cho 2n - 11
=> 35 chia hết cho 2n - 11
=> 2n - 11 thuộc Ư(35) = {-35; -7; -5; -1; 1; 5; 7; 35}
Mà n thuộc N
=> n thuộc {2; 3; 5; 6; 8; 9; 23}
d. n2 + 4 chia hết cho n + 1
=> n2 + 4 - n.(n + 1) chia hết cho n + 1
=> n2 + 4 - n2 - n chia hết cho n + 1
=> -n + 4 chia hết cho n + 1
=> -(n - 4) chia hết cho n + 1
=> n - 4 chia hết cho n + 1
=> n + 1 - 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5) = {-5; -1; 1; 5}
Mà n thuộc N
=> n thuộc {0; 4}.
a)2 vì 2+6 chia hết 2+2 =8 chia hết 4