Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2021 lúc 10:11

Đề em ghi bị sai nhé, đề đúng phải là: \(\dfrac{1}{n^2}>\dfrac{1}{n}-\dfrac{1}{n+1}\)

Ta có: \(n^2< n^2+n=n\left(n+1\right)\Rightarrow\dfrac{1}{n^2}>\dfrac{1}{n\left(n+1\right)}\)

\(\Leftrightarrow\dfrac{1}{n^2}>\dfrac{1}{n}-\dfrac{1}{n+1}\)

Lê Mỹ Linh
Xem chi tiết
Thiên Hàn
23 tháng 12 2018 lúc 13:18

\(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)

\(A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Ta có: -2 < x < 2

=> x thuộc { -1 ; 0 ; 1 }

Mà x khác -1 nên x = 0 ; x = 1

Với x = 0 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(0+1\right)^2}{\left(0-2\right)\left(0+2\right)}=\dfrac{1}{-4}\)

=> A có giá trị âm

Với x = 1 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(1+1\right)^2}{\left(1-2\right)\left(1+2\right)}=\dfrac{4}{-3}\)

=> A có giá trị âm

Vậy với -2 < x < 2 ; x khác -1 thì A có giá trị âm

Bảo Đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 6 2022 lúc 14:29

2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)

\(=9^n\cdot80+3^n\cdot10\)

\(=10\left(9^n\cdot8+3^n\right)⋮10\)

Haruno Sakura
Xem chi tiết
Akai Haruma
19 tháng 12 2017 lúc 0:03

Lời giải:

1)

Ta có: \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\frac{x+2+x-2+x^2+1}{x^2-4}\)

\(=\frac{x^2+2x+1}{x^2-4}=\frac{(x+1)^2}{x^2-4}\)

2) Với mọi \(-2< x< 2\Rightarrow (x-2)(x+2)< 0\Leftrightarrow x^2-4< 0\)

\((x+1)^2>0\forall x\neq 1; -2< x< 2\) nên \(\frac{(x+1)^2}{x^2-4}< 0\)

Tức là biểu thức A luôn nhận giá trị âm. Ta có đpcm.

Phùng Kim Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 15:28

\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)

\(=\dfrac{n+1}{5n+6}=VP\)

Trần Anh Hoàng
1 tháng 3 2022 lúc 15:35

undefined

Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 21:37

\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)

Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)

\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)

Nguyễn Hoàng Huy Tuấn
Xem chi tiết
Võ Nguyễn Anh Thư
20 tháng 7 2018 lúc 15:30

1/(n + 1) + 1/(n + 2) + ... + 1/(2n - 2) + 1/(2n - 1) + 1/(2n) > 13/24 (n ∈ N*)

Với n = 1, ta có : 1/2 + 1/3 + ... + 1/2 > 13/24 (đúng)

Giả sử bất đẳng thức đúng với n = k

Nghĩa là : 1/(k + 1) + 1/(k + 2) + ... + 1/(2k - 2) + 1/(2k - 1) + 1/(2k) > 13/24 (1)

Ta cần chứng minh bất đẳng thức đúng với n = k + 1

Nghĩa là : 1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 (2)

<=> [1/(k + 1) + 1/(k + 2) + 1/(k + 3) + ... + 1/(2k)] + 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 13/24

Ta chứng minh : 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 0 (3)

<=> [2(k + 1) + (2k + 1) - 2(2k + 1)] / [2(2k + 1)(k + 1)] > 0

<=>1 / [2(2k + 1)(k + 1)] > 0 (4)

Vì k ∈ N* => [2(2k + 1)(k + 1)] > 0 => (4) đúng => (3) đúng

Cộng (1) và (3) được :

1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24

=> (2) đúng

Theo quy nạp => Điều cần chứng minh là đúng => đpcm

DƯƠNG PHAN KHÁNH DƯƠNG
20 tháng 7 2018 lúc 17:03

Làm cách thông dụng nhất là quy đồng .

Khai triển VT ta có :

\(1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}\)

\(=\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\dfrac{n^4+2n^3+n^2+n^2+2n+1+n^2}{n^2\left(n+1\right)^2}\)

\(=\dfrac{n^4+2n^3+3n^2+2n+1}{n^2\left(n+1\right)^2}\)

\(=\dfrac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)

Vậy đẳng thức đã được chứng minh :3

Thu Pham Ngoc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 6 2022 lúc 21:51

Bài 3: 

Để A là số nguyên thì \(n-2+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

Nguyễn Thị Hải Yến
Xem chi tiết
Akai Haruma
25 tháng 4 2018 lúc 12:26

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=\frac{x_3}{a_3}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_{n}}\)

\(=\frac{c}{a_1+a_2+...+a_n}\)

Do đó:

\(\left\{\begin{matrix} x_1=\frac{ca_1}{a_1+a_2+....+a_n}\\ x_2=\frac{ca_2}{a_1+a_2+....+a_n}\\ x_3=\frac{ca_3}{a_1+a_2+...+a_n}\\ ...\\ x_n=\frac{ca_n}{a_1+a_2+..+a_n}\end{matrix}\right.\)

Tóm lại : \(x_i=\frac{ca_i}{a_1+a_2+...+a_n}\) với \(i=1,2,3,...,n\)