Cho \(y=j\left(x\right)=2x^2+3x-1\)
Tính \(j\left(0\right);j\left(1\right);j\left(2\right)\)
a.\(\left|3x\right|=x+7\)
b.\(\left|-4x\right|=-2x+11\)
c.\(\left|5x\right|=3x+4\)
d.\(\left|3x\right|-x-4=0\)
e.\(|9-\left|-5x\right|+2x=0\)
f.\(\left|x-9\right|=2x+5\)
g.\(\left|6-x\right|=2x-3\)
h.\(\left|2x+1\right|=6x+2\)
i.\(\left|4x\right|=2x+12\)
j.\(\left|4-x\right|=2x+1\)
a.\(|3x|=x+7\)
Nếu \(3x\ge0\Leftrightarrow x\ge0\).Khi đó ta có:
\(3x=x+7\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\dfrac{7}{2}=3,5\)
Nếu \(3x< 0\Leftrightarrow x< 0\).Khi đó ta có:
\(-3x=x+7\)
\(\Leftrightarrow-4x=7\)
\(\Leftrightarrow x=-\dfrac{7}{4}\)
a \(\left(x-1\right)^2-\left(y+1\right)^2=0\)
\(x+3y-5=0\)
b \(xy-2x-y+2=0\)
3x+y=8
c \(\left(x+y\right)^2-4\left(x+y\right)=12\)
\(\left(x-y\right)^2-2\left(x-y\right)=3\)
d \(2x-y=1\)
\(2x^2+xy-y^2-3y=-1\)
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)-12=0\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
Xét pt:
\(\left(x+y\right)^2-4\left(x+y\right)-12=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+2=0\\x+y-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=6-x\end{matrix}\right.\)
TH1: \(y=-x-2\) thế vào \(\left(x-y\right)^2-2\left(x-y\right)=3\)
\(\Rightarrow\left(2x+2\right)^2-2\left(2x+2\right)=3\)
\(\Leftrightarrow4x^2+4x-3=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\Rightarrow y=-\dfrac{5}{2}\\x=-\dfrac{3}{2}\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)
TH2: \(y=6-x\) thế vào...
\(\left(2x-6\right)^2-2\left(2x-6\right)=3\)
\(\Leftrightarrow4x^2-28x+45=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\Rightarrow y=\dfrac{7}{2}\\y=\dfrac{9}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
Mọi người dành thời gian giải hộ mình bài toán với:
B2: Giải các PT sau:
d) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x+1\right)\left(7x-10\right)\)
e) \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
f) \(x\left(2x-7\right)-4x+14=0\)
g) \(3x-15=2x\left(x-5\right)\)
h) \(\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)
i) \(0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)
j) \(\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)
k) \(x\left(2x-9\right)=3x\left(x-5\right)\)
Các Pro giải giúp mik với :(
e sẽ cố gắng !!!
\(3x-15=2x\left(x-5\right)\)
\(3x-15=2x^2-10x\)
\(3x-15-2x^2+10x=0\)
\(13x-15-2x^2=0\)
\(x\left(13-2x\right)-15=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\13-2x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\-2-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\2x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(f,x\left(2x-7\right)-4x+14=0\)
\(2x^2-7x-4x+14=0\)
\(2x^2-11x+14=0\)
\(x\left(2x-11\right)=-14\)
\(\Rightarrow\orbr{\begin{cases}x=-14\\2x-11=-14\end{cases}\Rightarrow\orbr{\begin{cases}x=-14\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-14\\x=-\frac{3}{2}\end{cases}}}\)
\(e,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(3x+36-8x=x^2+4x+4\)
\(-5x+36-x^2-4x-4=0\)
\(-9x+32-x^2=0\)
\(x\left(-9-x\right)+32=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\23-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=23\end{cases}}}\)
chúc cj hay a hc tốt
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
giải hpt:
a) \(\left\{{}\begin{matrix}4x+9y=6\\3x^2+6xy-x+3y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+y+2\right)\left(2x+2y-1\right)=0\\3x^2-32y^2+5=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\)
giải
•nếu \(-1>x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\)
•nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\)
•nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\)
◘ từ 3 ĐK trên, ta có:
\(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x< 2\right)\\2.\left(x-2\right)+3.\left(x+1\right)-x+1=2x\left(với\:x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4-2x-3x-3-x+1=2x\\4-2x+3x+3-x+1=2x\\2x-4+3x+3-x+1=2x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-2\\-2x=-8\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(loại\right)\\x=4\left(loại\right)\\x=0\left(loại\right)\end{matrix}\right.\)
vậy phương trình đã cho vô nghiệm.
P/S: giải dùm cho 1 bạn nhờ, đừng ném đa hay gạch j nhé !!!
My name is ???
Tính
\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(2x^2\left(x-2\right)+3x\left(x^2-x-2\right)-5\left(3-x^2\right)\)
\(\left(x-1\right)\left(x-3\right)-\left(4-x\right)\left(2x+1\right)-3x^2+2x-5\)
Bài 1:
i)\(\dfrac{x+1}{x-5}\)+\(\dfrac{x-18}{x-5}\)-\(\dfrac{x+2}{5-x}\)
j)\(\dfrac{3x\left(x-2\right)}{3x-2}\)+\(\dfrac{6x^2}{3x-2}\)-\(\dfrac{2\left(2-3x\right)}{2-3x}\)
n)\(\dfrac{2}{x}\)+\(\dfrac{3}{x-1}\)+\(\dfrac{1-4x}{x^2-x}\)
Bài 2:
j)\(\dfrac{2}{3x}\)-\(\dfrac{1}{2x-2}\)-\(\dfrac{x-4}{6x-6x^2}\)
i: \(=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=3\)
Bài 1:
\(i,\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}-\dfrac{x+2}{5-x}=\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}=\dfrac{x+1+x-18+x+2}{x-5}=\dfrac{3x-15}{x-5}=\dfrac{3\left(x-5\right)}{x-5}=3\)
\(j,\dfrac{3x\left(x-2\right)}{3x-2}+\dfrac{6x^2}{3x-2}-\dfrac{2\left(2-3x\right)}{2-3x}=\dfrac{3x^2-6x}{3x-2}+\dfrac{6x^2}{3x-2}+\dfrac{4-6x}{3x-2}=\dfrac{3x^2-6x+6x^2+4-6x}{3x-2}=\dfrac{9x^2-12x+4}{3x-2}=\dfrac{\left(3x-2\right)^2}{3x-2}=3x-2\)
\(n,\dfrac{2}{x}+\dfrac{3}{x-1}+\dfrac{1-4x}{x^2-x}=\dfrac{2\left(x-1\right)+3x+1-4x}{x\left(x-1\right)}=\dfrac{2x-2+3x+1-4x}{x\left(x-1\right)}=\dfrac{x-1}{x\left(x-1\right)}=\dfrac{1}{x}\)
Bài 2:
\(j,\dfrac{2}{3x}-\dfrac{1}{2x-2}-\dfrac{x-4}{6x-6x^2}=\dfrac{4\left(x-1\right)}{6x\left(x-1\right)}-\dfrac{3x}{6x\left(x-1\right)}-\dfrac{x-4}{6x\left(1-x\right)}=\dfrac{4x-4-3x+x-4}{6x\left(x-1\right)}=\dfrac{2x-8}{6x\left(x-1\right)}=\dfrac{2\left(x-4\right)}{6x\left(x-1\right)}=\dfrac{x-4}{3x\left(x-1\right)}\)
Bài dành riêng cho cậu chủ nhà tớ :))
Tìm x
\(\frac{x-1^2}{\left(x+2\right)^3\left(x-2\right)}=\frac{6x-8}{\left(4x^2\right)\left(2x-1\right)}+\left[\left(\frac{5x+7}{3x}\right)-\left(\frac{\left(8x-2\right)-\left(x-43\right)}{\left(5x\right)^2}\right)\right]\)
Bài này khá chill nhưng đề sai j thứ lỗi nghĩ lại :3, thật ra ko nghĩ đc chỉ nghĩ đc dài...... thầy sẽ bị nhầm lẫn.
\(\left(x^2-x+1\right)^4-6x^2\left(x^2-x+1\right)^2+5x^4=0\)
\(\Leftrightarrow\left[\left(x^2-x+1\right)^2\right]^2-2\left(x^2-x+1\right)^2.3x^2+\left(3x^2\right)^2-4x^4=0\)
\(\Leftrightarrow\left[\left(x^2-x+1\right)^2-3x^2\right]^2-\left(2x^2\right)^2=0\)
\(\Leftrightarrow\left[\left(x^2-x+1\right)^2-3x^2+2x^2\right]\left[\left(x^2-x+1\right)^2-3x^2-2x^2\right]=0\)
\(\Leftrightarrow\left[\left(x^2-x+1\right)^2-x^2\right]\left[\left(x^2-x+1\right)^2-5x^2\right]=0\)
\(\Leftrightarrow\left(x^2-x+1+x^2\right)\left(x^2-x+1-x^2\right)\left(x^4-2x^3-4x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2-x+1\right)\left(1-x\right)\left(x+1\right)\left(x^3-2x^2-x+1\right)=0\)
Mấy bạn cho mình gửi tạm nha, xíu mình nhờ CTV xóa :(