a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)-12=0\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
Xét pt:
\(\left(x+y\right)^2-4\left(x+y\right)-12=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+2=0\\x+y-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=6-x\end{matrix}\right.\)
TH1: \(y=-x-2\) thế vào \(\left(x-y\right)^2-2\left(x-y\right)=3\)
\(\Rightarrow\left(2x+2\right)^2-2\left(2x+2\right)=3\)
\(\Leftrightarrow4x^2+4x-3=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\Rightarrow y=-\dfrac{5}{2}\\x=-\dfrac{3}{2}\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)
TH2: \(y=6-x\) thế vào...
\(\left(2x-6\right)^2-2\left(2x-6\right)=3\)
\(\Leftrightarrow4x^2-28x+45=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\Rightarrow y=\dfrac{7}{2}\\y=\dfrac{9}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
d.
\(\left\{{}\begin{matrix}2x-y=1\\2x^2+xy-y^2-3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-1\\2x^2+xy-y^2-3y=-1\end{matrix}\right.\)
Thế pt trên vào pt dưới:
\(2x^2+x\left(2x-1\right)-\left(2x-1\right)^2-3\left(2x-1\right)+1=0\)
\(\Leftrightarrow3-3x=0\)
\(\Leftrightarrow x=1\Rightarrow y=1\)