(2x+11)(x+3)
e) ( x + 3)^3 = ( 2x) ^3
f) ( 5 - x )^5 = 32
g) ( 5x - 6)^3 = 64
h)5 . 9^x = 405
i) 11^5 : 11^ n - 2 = 11^5
k) ( 3x)^3 = ( 2x + 1)^3
e) \(\left(x+3\right)^3=\left(2x\right)^3\)
\(\Rightarrow x+3=2x\)
\(\Rightarrow2x-x=3\)
\(\Rightarrow x=3\)
f) \(\left(5-x\right)^5=32\)
\(\Rightarrow\left(5-x\right)^5=2^5\)
\(\Rightarrow5-x=2\)
\(\Rightarrow x=5-2\)
\(\Rightarrow x=3\)
g) \(\left(5x-6\right)^3=64\)
\(\Rightarrow\left(5x-6\right)^3=4^3\)
\(\Rightarrow5x-6=4\)
\(\Rightarrow5x=4+6\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=\dfrac{10}{2}\)
\(\Rightarrow x=5\)
h) \(5\cdot9^x=405\)
\(\Rightarrow9^x=\dfrac{405}{5}\)
\(\Rightarrow9^x=81\)
\(\Rightarrow9^x=9^2\)
\(\Rightarrow x=2\)
i) \(11^5:11^{n-2}=11^5\)
\(\Rightarrow11^{n-2}=11^5:11^5\)
\(\Rightarrow11^{n-2}=1\)
\(\Rightarrow11^{n-2}=11^0\)
\(\Rightarrow n-2=0\)
\(\Rightarrow n=2\)
k) \(\left(3x\right)^3=\left(2x+1\right)^3\)
\(\Rightarrow3x=2x+1\)
\(\Rightarrow3x-2x=1\)
\(\Rightarrow x=1\)
Lời giải cho phương trình \(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \) như sau đúng hai sai?
\(\)\(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \)
\( \Rightarrow - 2{x^2} - 2x + 11 = - {x^2} + 3\) (bình phương cả hai vế để làm mất dấu căn)
\( \Rightarrow {x^2} + 2x - 8 = 0\) (chuyển vế, rút gọn)
\( \Rightarrow x = 2\) hoặc \(x = - 4\) (giải phương trình bậc hai)
Vậy phương trình đã cho có hai nghiệm là 2 và -4.
Thay \(x = 2\) vào phương trình \(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \) ta thấy không thỏa mãn vì dưới dấu căn là \( - 1\) không thỏa mãn
Vậy \(x = 2\) không là nghiệm của phương trình do đó lời giải như trên là sai.
tìm x,biết:
a, 3(x-3)-6x=0
b, 2x(x-15)+2x
c, 2(x-3)+3x=9
d, x(x-11)+2(x-11)=0
e,x(x+2)+8=x^2
f, 8(x+1)+2x=-2
g,12-3(x+2)=0
a: \(3\left(x-3\right)-6x=0\)
=>\(3x-9-6x=0\)
=>-3x-9=0
=>3x+9=0
=>3x=-9
=>\(x=-\dfrac{9}{3}=-3\)
b: Đề thiếu vế phải rồi bạn
c: \(2\left(x-3\right)+3x=9\)
=>2x-6+3x=9
=>5x-6=9
=>5x=6+9=15
=>x=15/5=3
d: \(x\left(x-11\right)+2\left(x-11\right)=0\)
=>\(\left(x-11\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)
e: \(x\left(x+2\right)+8=x^2\)
=>\(x^2+2x+8=x^2\)
=>2x+8=0
=>2x=-8
=>x=-8/2=-4
f: \(8\left(x+1\right)+2x=-2\)
=>\(8x+8+2x=-2\)
=>10x=-2-8=-10
=>\(x=-\dfrac{10}{10}=-1\)
g: 12-3(x+2)=0
=>3(x+2)=12
=>x+2=12/3=4
=>x=4-2=2
|-2x + 1|=3
(x+9-17)-24=11-(x+17)
-3.(2x+1)-11=-8-2.(x+3)
|x+4|+x=12-x
Giúp mình với mình cần gấp lắm
Giải các bất phương trình sau và biểu diễn tập hợp nghiệm trên trục số
\(\dfrac{2x-3}{2}\)>\(\dfrac{8x-11}{6}\), 2x-3 ≤ 8x-11, \(\dfrac{x-3}{2}\)>\(\dfrac{x-11}{3}\)
\(\dfrac{2x-3}{2}>\dfrac{8x-11}{6}\)
\(\Leftrightarrow\dfrac{3\left(2x-3\right)}{6}>\dfrac{8x-11}{6}\)
\(\Leftrightarrow3\left(2x-3\right)>8x-11\)
\(\Leftrightarrow6x-9>8x-11\)
\(\Leftrightarrow-2x>-2\)
\(\Leftrightarrow x< 1\)
Vậy \(S=\left\{x|x< 1\right\}\)
\(2x-3\le8x-11\)
\(\Leftrightarrow-6x\le-8\)
\(\Leftrightarrow x\ge\dfrac{8}{6}\)
Vậy \(S=\left\{x|x\ge\dfrac{8}{6}\right\}\)
\(\dfrac{x-3}{2}>\dfrac{x-11}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{6}>\dfrac{2\left(x-11\right)}{6}\)
\(\Leftrightarrow3\left(x-3\right)>2\left(x-11\right)\)
\(\Leftrightarrow3x-9>2x-22\)
\(\Leftrightarrow x>-13\)
Vậy \(S=\left\{x|x>-13\right\}\)
tìm x 4.(x+1).(-x+2)+(2x-1).(2x+3)=-11 (2x+4).(3x+1).(x-2)-(-3x2 +1).(-2x+2/3)=-26/3
\(4\left(x+1\right)\left(-x+2\right)+\left(2x-1\right)\left(2x+3\right)=-11\)
\(\text{⇔}-4x^2+4x+8+4x^2+4x-3=-11\)
\(\text{⇔}8x+5=-11\)
\(\text{⇔}8x=-16\)
\(\text{⇔}x=-2\)
Vậy: \(x=-2\)
==========
\(\left(2x+4\right)\left(3x+1\right)\left(x-2\right)-\left(-3x^2+1\right)\left(-2x+\dfrac{2}{3}\right)=-\dfrac{26}{3}\)
\(\text{⇔}6x^3+2x^2-24x-8-6x^3-2x^2-2x+\dfrac{2}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x-\dfrac{22}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x=-\dfrac{4}{3}\)
\(\text{⇔}x=\dfrac{2}{39}\)
1)x^3-16x
2)x^4-2x^3
3)(2x-11)(x^2-1)
4)x^3-36x
5)2x+19
1)
x^3 -16x=0`
`<=>x(x^2 -16)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b)
`x^4 -2x^3=0`
`<=>x^3 (x-2)=0`
\(< =>\left[{}\begin{matrix}x^3=0\\x-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
3)
`(2x-11)(x^2 -1)=0`
\(< =>\left[{}\begin{matrix}2x-11=0\\x^2-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}2x=11\\x^2=1\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=1\\x=-1\end{matrix}\right.\)
4)
`x^3 -36x=0`
`<=>x(x^2 -36)=0`
\(< =>\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
5)
`2x+19=0`
`<=>2x=-19`
`<=>x=-19/2`
(x^4 - 2x^3 + x^2 + 13x - 11) : (x^2 - 2x + 3)
-x+3=2x+9
-x-5=-2x+11
\(-x+3=2x+9\\ \Rightarrow-x-2x=9-3\\ \Rightarrow-3x=6\\ \Rightarrow x=-\dfrac{6}{3}\\ \Rightarrow x=-2\)
Vậy \(x=-2\)
\(-x-5=-2x+11\\ \Rightarrow-x+2x=11+5\\ \Rightarrow x=16\)
Vậy \(x=16\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của x
b) B = 2x(x – 3) – (2x – 2)(x – 2)
c) C = (3x – 5)(2x + 11) – (2x – 2)(3x + 7)
d) D = (2x + 11)(3x – 5) – (2x + 3)(3x + 7
b: \(B=2x\left(x-3\right)-\left(2x-2\right)\left(x-2\right)\)
\(=2x^2-6x-2x^2+4x+2x-4\)
=-4